Some characterizations of the indefinite chaotic order

Natália Bebiano¹, Rute Lemos², João da Providência¹ and Graça Soares³

¹University of Coimbra, Portugal ²University of Aveiro, Portugal ³University of Trás-os-Montes e Alto Douro, Vila Real, Portugal

Abstract

A selfadjoint involutive matrix J endows C^n with an indefinite inner product $[\cdot, \cdot]$ given by $[x, y] := y^*Jx$, $x, y \in C^n$. For a pair A, Bof J-selfadjoint matrices with positive eigenvalues, the J-chaotic order is defined by $\log(A) \geq^J \log(B)$, where $\log(t)$ denotes the principal branch of the logarithm function. Some inequalities for J-selfadjoint matrices involving the α -power mean are presented and some characterizations of the indefinite chaotic order are obtained. Indefinite variants of well known results valid for positive definite matrices are considered [1], [2]. For instance, an indefinite satellite to the chaotic Furuta inequality is obtained [3]. Some results in this talk are based on a joint work with N. Bebiano, R. Lemos and J. da Providência.

Keywords

 $J-{\rm selfadjoint}$ matrix, Furuta inequality of indefinite type, $J-{\rm chaotic}$ order, $\alpha-{\rm power}$ mean.

References

- Bebiano, N., R. Lemos, J. da Providencia, and G. Soares (2009). A note on indefinite chaotic order. J. Adv. Research Appl. Math. 1, 19–26.
- [2] Bebiano, N., R. Lemos, J. da Providência, and G. Soares (2010). Further developments of Furuta inequality. *Math. Inequal. Appl.* 13(3), 523–535.
- [3] Soares, G. (2009). Inequalities for J-contractions involving the α-power mean. JIPAM. J. Inequal. Pure Appl. Math. 10(4), article 95, 7 pp.

1