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Nonlinear Eigenvalue Problems

We discuss nonlinear eigenvalue problems to compute
eigenvalues λ and right eigenvectors x of

f (λ, α)x = 0, x ∈ Fn, λ ∈ F,

where F is a field, typically F = R or F = C.

f : F× Fp → F`,

and α denotes a set of p parameters.
Sometimes we also want left eigenvectors y ∈ F` such that

y∗f (λ, α) = 0.
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Typical functions

. Generalized linear evps f = λA1 + A0.

. Quadratic evps f = λ2A2 + λA1 + A0.

. Polynomial evps f =
∑k

i=0 λ
iAi with coefficient matrices

Ai ∈ F`,n.
. Rational evps f =

∑k
i=−j λ

iAi with coefficient matrices
Ai ∈ F`,n.

. General nonlinear evps f , e.g. f = exp(
∑k

i=−j λ
iAi).
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Typical questions

. Find all eigenvalues λ and associated eigenvectors x for a
given parameter value α.

. Find some important eigenvalues λ and associated
eigenvectors x for a given parameter α.

. Find all eigenvalues in a given subset of C for a given
parameter α.

. Optimize eigenvalue positions over parameter set.

. . . ..
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Resonances in rail tracks
Project with company SFE in Berlin 2004/2006
. Modeling of excitation of the tracks by the train.
. Discretization of rail and gravel bed with finite elements.
. Parametric eigenvalue problem for excitation frequencies.
. Optimization of parameters.
. Goal: Higher safety and reduction of noise.
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Why did SFE need help?

. Even for very coarse discretization (of the track and gravel
bed), commercial programs needed several hours of cpu time
to solve the evp for the whole frequency range.

. Commercial packages delivered no correct digit in the evs.

. Accuracy went down when the discretization was made finer.

. Optimization of parameters not possible with current tools.
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Background
Under the assumption of an infinite rail, FEM in space leads to

Mz̈ +Dż +Kz = F ,

with symmetric infinite block tridiagonal coefficient matrices
(operators)M,D,K, whereM, z,F are given by

. . . . . . 0 . . . 0

. . . Mj−1,0 Mj,1 0 . . .
0 MT

j,1 Mj,0 Mj+1,1 0
... . . . MT

j+1,1 Mj+1,0 Mj+2,1

0 . . . 0 . . . . . .


,


...

zj−1

zj

zj+1
...

 ,


...
Fj−1

Fj

Fj+1
...

 .

Operators D,K have the same structure asM.
Furthermore, Mj,0 > 0, Dj,0, Kj,0 ≥ 0.
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Solution ansatz

Fourier expansion

Fj = F̂jeiωt , zj = ẑjeiωt ,

where ω is the excitation frequency.
Using periodicity and combining l parts into one vector

yj =
[

ẑT
j ẑT

j+1 . . . ẑT
j+l

]T
gives a compley (singular) difference equation

A1(ω)yj+1 + A0(ω)yj + A1(ω)T yj−1 = Gj .

with A0(ω) = AT
0 (ω) block tridiagonal and A1(ω) singular of rank

smaller than n/2.
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The associated nonlinear evp

Ansatz: yj+1 = κyj , leads to the palindromic rational eigenvalue
problem

R(κ)x = (κA1(ω) + A0(ω) +
1
κ

A1(ω)T )x = 0.

Alternative representation as palindromic polynomial eigenvalue
problem

P(λ)x = (λ2A1(ω) + λA0(ω) + A1(ω)T )x = 0.
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Acoustic field computation

Industrial Project with company SFE in Berlin 2007/2011.

. Computation of acoustic field inside car.

. SFE has its own parameterized FEM model which allows
geometry and topology changes. (→ film)

. Problem is needed within optimization loop that changes
geometry, topology, damping material, etc.

. Model reduction and reduced order models for optimization.

. Ultimate goal: Minimize noise in important regions in car
interior.
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Acoustic field

SFE GmbH, Berlin
CEO: Hans Zimmer
h.zimmer@sfe-berlin.de
http://www.sfe-berlin.de

© SFE GmbH 2007

SFE AKUSMOD

��������	��
��
�
���

DLOAD 1 = symmetrical excitation
DLOAD 2 = antimetrical excitation

Unit force = 1 N mm

grid-ID 31010

grid-ID 31011
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Tasks in the project

. Numerical methods for large scale structured parameter
dependent polynomial eigenvalue problems.

. Compute eigenvalues in trapezoidal region around 0.

. Determine projectors on important spectral subspaces for
model reduction.

. Model reduction for parameterized model.

. Optimization of frequencies.

. Implementation of parallel solver in SFE Concept.
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Full model: summary

[
Ms 0
DT

sf Mf

] [
üd

p̈d

]
+

[
Ds 0
0 Df

] [
u̇d

ṗd

]
+

[
Ks(ω) Dsf

0 Kf

] [
ud

pd

]
=

[
fs
0

]
.

. Ms,Mf ,Kf are real symm. pos. semidef. mass/stiffness
matrices of structure and air, Ms is singular and diagonal, Ms

is a factor 1000− 10000 larger than Mf .
. Ks(ω) = Ks(ω)T = K1(ω) + ıK2.
. Ds,Df are real symmetric damping matrices.
. Dsf is real coupling matrix between structure and air.
. Parts depend on geometry, topology and material parameters.

Nonlinear EVPs 15 / 203



Eigenvalue problem

(
λ2
[

Ms 0
DT

sf Mf

]
+ λ

[
Ds 0
0 Df

]
+

[
Ks(ω) Dsf

0 Kf

])[
xs

xf

]
= 0,

or after scaling second block row with λ−1 and second block
column with λ one has the complex symmetric quadratic evp(
λ2
[

Ms 0
0 Mf

]
+ λ

[
Ds Dsf

DT
sf Df

]
+

[
Ks(ω) 0

0 Kf

])[
xs

λ−1xf

]
= 0.
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Linear Evps

. For linear evps (A0 + λA1)x = 0 we can analyze the properties
via the normal form of the pair (A0,A1) under equivalence
transformations (PA0Q,PA1Q) with nonsingular matrices P,Q.

. For the special case A1 = I under similarity transformations
Q−1A0Q with nonsingular Q.

. For the numerical solution we want to use unitary (real
orthogonal) P,Q.

Nonlinear EVPs 18 / 203



Normal Forms

Problem class Transformation Normal form
λx + A0x Q−1AQ, Q invertible Jordan can. form
λA1x + A0x , PA0Q, PA1Q P,Q inv. Kronecker can. form
(
∑k

i=0 λ
iAi)x = 0 ? ?
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Jordan canonical form

Theorem (Jordan canonical form (JCF))

For every A0 ∈ Cn,n there exists nonsingular Q ∈ Cn,n such that

Q−1A0−→Q = diag(Jρ1 , . . . , Jρv ), Jρj =


λj 1

. . .

. . . 1
λj

 ∈ Cρj ,ρj ,

What can we learn from the JCF?
Eigenvalues, algebraic and geometric multiplicities, minimal
polynomial, characteristic polynomial, left and right eigenvectors
and principal vectors, invariant subspaces.
In the real case, real Jordan form.
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Kronecker canonical form (KCF)

Theorem (Kronecker canonical form (KCF))
For every pair (A1,A0),Ai ∈ C`,n there exist nonsingular
P ∈ C`,`,Q ∈ Cn,n such that P(λA1 + A0)Q =
diag(Lε1 , . . . ,Lεp ,Mη1 , . . . ,Mηq , Jρ1 , . . . , Jρv ,Nσ1 , . . . ,Nσw ), with

Lεj = λ


0 1

. . .
. . .
0 1

 +


1 0

. . .
. . .
1 0

 , Mηj = λ



1

0
. . .

. . . 1
0

 +



0

1
. . .

. . . 0
1

 ,

Jρj = λ


1

. . .
1

 +



λj 1

. . .

. . . 1
λj


, Nσj = λ



0 1

. . .
. . .

. . . 1
0

 +


1

. . .
1


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Regularity, index

Definition
A matrix pencil λA1 + A0, A0,A1 ∈ C`,n, is called regular if ` = n
and if

P(λ) = det(λA1 + A0)

does not vanish identically, otherwise singular.
The size νd of the largest nilpotent (N)-blocks in the KCF is
called the index of λA1 + A0.
Values λ ∈ C such that rank(λA1 + A0) < min(`,n) are called
finite eigenvalues of λA1 + A0.
The eigenvalue µ = 0 of A1 + µA0 is called the infinite eigenvalue
of λA1 + A0.
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Deflating subspaces

Definition
A subspace L ⊂ Cn is called deflating subspace for the pencil
λA1 + A0 if for a matrix XL ∈ Cn,r with full column rank and
rangeXL = L there exist matrices YL ∈ Cn,r , RL ∈ Cr ,r , and
SL ∈ Cr ,r such that

A1XL = YLRL, A0XL = YLSL.
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Weierstraß canonical form (WCF)

Theorem (Weierstraß canonical form (WCF))
For every regular pair (A1,A0),Ai ∈ Cn,n there exist nonsingular
P ∈ Cn,n,Q ∈ Cn,n such that
P(λA1 + A0)Q = diag(Jρ1 , . . . , Jρv ,Nσ1 , . . . ,Nσw ), with

Jρj = λ


1

. . .
1

 +



λj 1

. . .

. . . 1
λj


, Nσj = λ



0 1

. . .
. . .

. . . 1
0

 +


1

. . .
1


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What do learn from KCF, WCF?

. Finite eigenvalues and infinite eigenvalues.

. Algebraic and geometric multiplicities.

. Index, Kronecker indices (sizes of singular blocks).

. Regularity, non-regularity.

. Eigenvectors, principal vectors, deflating subspaces, reducing
subspaces (subspaces associated with singular blocks).
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Evaluation of Normal Form Approach

. The normal forms are essential for the theoretical analysis
evps.

. They allow linear stability/ bifurcation analysis, the points
where ranks change are a superset of the set of critical points.

. But, they cannot be used in general for the development of
numerical methods

. They are typically not numerically stably computable, since
the structure can be changed by arbitrary small perturbations.
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Schur form

Theorem (Schur form)

For every matrix A0 ∈ Cn,n there exist a unitary matrix Q ∈ Cn,n

such that

QHA0Q =


λ1 ∗ . . . ∗
0 λ2 ∗ ∗
... . . . . . . ...
0 . . . 0 λn


What can we learn from Schur form ?
Eigenvalues, algebraic multiplicity, invariant subspaces.
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Generalized upper triang. form

Theorem (GUPTRI form: Demmel/Kågström 1993)
Given a matrix pair (A1,A0), there exist unitary matrices P,Q
such that (PA1Q,PA0Q) are in the following generalized upper
triangular form:

P(λA1+A0)Q =


λE11 − A11 λE12 − A12 λE13 − A13 λE14 − A14

0 λE22 − A22 λE23 − A23 λE24 − A24
0 0 λE33 − A33 λE34 − A34
0 0 0 λE44 − A44

 .
Here n2 = `2,n3 = `3, λE11 − A11 and λE44 − A44 contains all left
and right singular Kronecker blocks of λA1 + A0, respectively.
Furthermore, λE22 − A22 and λE33 − A33 are regular and contain
the regular finite and infinite structure of λA1 + A0, respectively.
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What can we learn form GUPTRI?

. Eigenvalues

. Algebraic multiplicity of eigenvalues.

. Left and right deflating and reducing subspaces.

. With a lot of perturbation theory also information on the length
of chains.
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Stably computable condensed forms

Problem class transformation stable cond. form
λx + A0x = 0 Q−1AQ, Q unitary Schur form
λA1x + A0x = 0 PA1Q, PA0Q, P,Q unit. gen. Schur form
(
∑k

i=0 λ
iAi)x = 0 ? ?
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Matrix polynomials

We now study polynomial evps

P(λ) x = (
k∑

i=0

λiAi)x = 0,

where Ai ∈ F`,n.
We will extend concepts from linear to general matrix
polynomials.
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Regularity

Definition
A matrix polynomial P(λ) =

∑k
i=0 λ

iAi , with A0, . . . ,Ak ∈ F`,n,
Ak 6= 0 is called regular if the coefficients are square matrices
and if det P(λ) does not vanish identically for all λ ∈ C, otherwise
it is called singular.
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Jordan Chains
Definition
Let P(λ) =

∑k
i=0 λ

iAi with A0, . . . ,Ak ∈ F`,n. A right (left) Jordan
chain of length r + 1 associated with a finite ev λ̂ of P(λ) is a
sequence xi (yi), i = 0, . . . , r with x0, xr 6= 0 (y0, yr 6= 0) and

P(λ̂)x0 = 0;

P(λ̂)x1 + [ 1
1!

d
dλP(λ̂)]x0 = 0;

...
P(λ̂)xr + [ 1

1!
d

dλP(λ̂)]xr−1 + . . . + [ 1
r !

d r

dλr P(λ̂)]x0 = 0,

yH
0 P(λ̂) = 0;

yH
1 P(λ̂) + yH

0 [ 1
1!

d
dλP(λ̂)] = 0;

...
yH
` P(λ̂) + yH

r−1[ 1
1!

d
dλP(λ̂)] + . . . + yH

0 [ 1
r !

d r

dλr P(λ̂)] = 0.
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Kronecker Chains to ev∞

Definition
Let P(λ) =

∑k
i=0 λ

iAi with A0, . . . ,Ak ∈ F`,n.
The reversal of P(λ) is the polynomial

rev P(λ) := λkP(1/λ) =
k∑

i=0

λiAk−i .

A right (left) Kronecker chain of length r + 1 associated with the
eigenvalue infinity of P(λ) is a right (left) Jordan chain of length
r + 1 associated with eigenvalue λ = 0 of revP(λ).
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Singular Kronecker Chains

Definition
Let P(λ) =

∑k
i=0 λ

iAi with A0, . . . ,Ak ∈ Fr ,n. A right singular
Kronecker chain of length r + 1 associated with the right singular
part of P(λ) is defined as the sequence of coefficient vectors xi ,
i = 0, . . . , r in a nonzero vector polynomial
x(λ) = xrλ

r + . . . + x1λ
1 + x0 of minimal degree such that

P(λ)x(λ) = 0, considered as a polynomial equation in λ.
A left singular Kronecker chain of length r + 1 associated with
the left singular part of P(λ) is a sequence of coefficient vectors
yi , i = 0, . . . , r in a nonzero vector polynomial
y(λ) = yrλ

r + . . . + y1λ
1 + y0 of minimal degree such that

yH(λ)P(λ) = 0.
Here yH(λ) = yH

r λ
r + . . . + yH

1 λ
1 + yH

0 .
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’Linearization’

Definition
For a matrix polynomial P(λ), a matrix pencil L(λ) = λX + Y is
called linearization of P(λ), if there exist unimodular matrices
S(λ),T (λ) such that

S(λ)L(λ)T (λ) = diag(P(λ), In, . . . , In).

If L(λ) is a linearization for P(λ) and rev L(λ) is a linearization for
rev P(λ), then L(λ) is said to be a strong linearization for P(λ).
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Properties of linearization

. Linearization preserves the algebraic and geometric
multiplicities of all finite eigenvalues, but not those of infinite
eigenvalues.

. Strong linearization preserves the algebraic and geometric
multiplicities of all finite and infinite eigenvalues.

. The lengths of singular chains are not all invariant.
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Companion linearization

The classical companion linearization for polynomial eigenvalue
problems

P(λ)x =
k∑

i=0

λiAix

is to introduce new variables

yT =
[

y1, y2, . . . , y`
]T

=
[

x , λx , . . . , λ`−1x
]T

and to turn it into a generalized linear eigenvalue problem

L(λ)y := (λX + Y )y = 0

of size nk × nk .
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Difficulties with companion form
Example The even quadratic eigenvalue problem

(λ2M + λG − K )x = 0

with M = MT ,K = K T > 0, G = −GT has a spectrum that is
symmetric with respect to both axis, but in the companion
linearization[

O I
−K −G

] [
x
y

]
= λ

[
I O
O M

] [
x
y

]
,

does not see this structure.
. Numerical methods destroy eigenvalue symmetries in finite

arithmetic !
. Perturbation theory requires structured perturbation for

stability near the imaginary axis.
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Pros and cons of linearization

Is it a good idea to perform a linearization?
Pros
. Simpler analysis for linear eigenvalue problems.
. Not many well studied methods for matrix polynomials.
. No generalization of Jordan/Kronecker canonical form for

matrix polynomials.
Cons
. The condition number (sensitivity) may increase dramatically.
. The size of the problem is increased.
. Symmetry structures may be lost.
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Optimal Linearizations

Goal: Find a large class of linearizations for which:
. the linear pencil is easily constructed;
. structure preserving linearizations exist;
. the conditioning of the linear problem can be characterized

and optimized;
. eigenvalues/eigenvectors of the original problem are easily

read off;
. a structured perturbation analysis is possible.
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Vector spaces of potential linearizations

Notation: Λ := [λk−1, λk−2, . . . , λ, 1]T , ⊗ - Kronecker product.

Definition Mackey2/Mehl/M. 2006. For a given n × n matrix
polynomial P(λ) of degree k define the sets:

VP = {v ⊗ P(λ) : v ∈ Fk}, v is called right ansatz vector,
WP = {wT ⊗ P(λ) : w ∈ Fk}, w is called left ansatz vector,

L1(P) =
{

L(λ) = λX + Y : X ,Y ∈ Fkn×kn, L(λ) (Λ⊗ In) ∈ VP

}
,

L2(P) =
{

L(λ) = λX + Y : X ,Y ∈ Fkn×kn,
(
ΛT ⊗ In

)
L(λ) ∈ WP

}
,

DL(P) = L1(P) ∩ L2(P) .
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Properties of these sets

Lemma
For any n × n matrix polynomial P(λ) of degree k,

L1(P) is a vector space of dimension k(k − 1)n2 + k,
L2(P) is a vector space of dimension k(k − 1)n2 + k,
DL(P) is a vector space of dimension k.

These are not all linearizations but they form a large class.
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Example

Consider the cubic matrix polynomial (Antoniou and
Vologiannidis 2004), P(λ) = λ3A3 + λ2A2 + λA1 + A0. Then the
pencil

L(λ) = λ

 0 A3 0
I A2 0
0 0 I

+

 −I 0 0
0 A1 A0

0 −I 0


is a linearization for P but neither in L1(P) nor in L2(P).
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The shifted sum
Definition (Column Shifted sum)

Let X and Y be block matrices

X =

X11 · · · X1k
...

...
Xk1 · · · Xkk

 , Y =

Y11 · · · Y1k
...

...
Yk1 · · · Ykk


with blocks Xij ,Yij ∈ Fn×n. Then the column shifted sum of X and
Y is defined to be

X �→Y :=

X11 · · · X1k 0
...

...
...

Xk1 · · · Xkk 0

+

0 Y11 · · · Y1k
...

...
...

0 Yk1 · · · Ykk

 .

The row shifted sum is defined analogously.
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Example

For the first companion form C1(λ) = λX1 + Y1 of
P(λ) =

∑k
i=0 λ

iAi , the column shifted sum X1 �→Y1 is just
Ak 0 · · · 0
0 In

. . .
...

...
. . . . . . 0

0 · · · 0 In

 �→


Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . . . . .
...

0 · · · −In 0



=


Ak Ak−1 · · · A0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .
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Shifted sum property

Lemma
Let P(λ) =

∑k
i=0 λ

iAi be an n × n matrix polynomial, and
L(λ) = λX + Y a kn × kn pencil. Then for v ∈ Fk ,

(λX+Y )·(Λ⊗In) = v⊗P(λ) ⇐⇒ X �→Y = v⊗[Ak Ak−1 · · · A0] ,

and so the space L1(P) may be alternatively characterized as

L1(P) =
{
λX + Y : X �→Y = v ⊗ [Ak Ak−1 · · · A0] , v ∈ Fk

}
.

Analogously we can characterize L2(P).
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Characterization of L1(P)

Theorem
Let P(λ) =

∑k
i=0 λ

iAi be an n × n matrix polynomial, and v ∈ Fk

any vector. Then the set of pencils in L1(P) with right ansatz
vector v consists of all L(λ) = λX + Y such that

X =
[

v ⊗ Ak −W
]

and
Y =

[
W +

(
v ⊗

[
Ak−1 · · · A1

])
v ⊗ A0

]
.

with W ∈ Fkn×(k−1)n chosen arbitrarily.

Corollary

L2(P) =
[
L1(PT )

]T .
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A linearization Check
Procedure for linearization condition for L1(P).

1) Suppose P(λ) is regular and L(λ) = λX + Y ∈ L1(P) has
0 6= v ∈ Fk , i.e., L(λ) · (Λ⊗ In) = v ⊗ P(λ).

2) Select any nonsingular matrix M such that Mv = αe1.

3) Form L̃(λ) := (M ⊗ In)L(λ), which must be of the form

L̃(λ) = λX̃ + Ỹ = λ

[
X̃11 X̃12

0 −Z

]
+

[
Ỹ11 Ỹ12

Z 0

]
,

where X̃11 and Ỹ12 are n × n.
4) Check det Z 6= 0 , the linearization condition for L(λ).
This procedure can be implemented as a numerical algorithm:
choose M to be unitary, then use a rank revealing factorization to
check if Z is nonsingular.
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Example
Consider a general regular P(λ) = λ2A + λB + C, and

L(λ) = λ

[
A B + C
A 2B − A

]
+

[
−C C

A− B C

]
.

Since [
A B + C
A 2B − A

]
�→
[
−C C

A− B C

]
=

[
A B C
A B C

]
,

we have L(λ) ∈ L1(P) with right ansatz vector v =
[

1 1
]T .

Subtracting the first entry from the second reduces v to e1, and
the corresponding block-row-operation on Y yields

Ỹ =

[
−C C

A− B + C 0

]
.

Hence Z = A− B + C, and we have a linearization iff
det(A− B + C) = det P(−1) 6= 0, i.e., λ = −1 is not an
eigenvalue of P.
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Example
Consider the general regular cubic polynomial
P(λ) = λ3A + λ2B + λC + D and the pencil

λX+Y = λ

 A 0 2C
−2A −B − C D − 4C

0 A −I

+

 B −C D
C − B 2C − D −2D
−A I 0


in L1(P). Since X �→Y =

[
1 −2 0

]T ⊗ [A B C D
]
, we

have v =
[
1 −2 0

]T . Adding twice the first block-row of Y to
the second block-row of Y gives

Z =

[
B + C −D
−A I

]
,

and hence the condition det Z = det(B + C − DA) 6= 0.
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Eigenvector Recovery Property

Theorem
Let P(λ) be an n × n matrix polynomial of degree k, and let L(λ)
be any pencil in L1(P) with ansatz vector v 6= 0.

Then x ∈ Cn is a right eigenvector for P(λ) with finite
eigenvalue λ ∈ C if and only if Λ⊗ x is a right eigenvector for
L(λ) with eigenvalue λ.
If in addition P is regular, i.e. det P(λ) 6≡ 0, and L ∈ L1(P) is a
linearization then every eigenvector of L with finite eigenvalue
λ is of the form Λ⊗ x for some eigenvector x of P.

A similar result holds for the space L2(P) and also for
eigenvalues 0,∞.
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Strong Linearization Property

Theorem
Let P(λ) be a regular matrix polynomial and L(λ) ∈ L1(P) (or
L(λ) ∈ L2(P)). Then the following statements are equivalent.

(i) L(λ) is a linearization for P(λ).
(ii) L(λ) is a regular pencil.
(iii) L(λ) is a strong linearization for P(λ).
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Example

The first and second companion forms

C1(λ) := λ


Ak 0 · · · 0

0 In
. . . ...

... . . . . . . 0
0 · · · 0 In

+


Ak−1 Ak−2 · · · A0

−In 0 · · · 0
... . . . . . . ...
0 · · · −In 0



C2(λ) := λ


Ak 0 · · · 0

0 In
. . . ...

... . . . . . . 0
0 · · · 0 In

+


Ak−1 −In · · · 0

Ak−2 0 . . . ...
...

... . . . −In
A0 0 · · · 0

 .

are strong linearizations in L1(P), L2(P), respectively.
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Characterization of DL(P)

Lemma
Consider an n × n matrix polynomial P(λ) of degree k. Then, for
v = (v1, . . . , vk )T and w = (w1, . . . ,wk )T in Fk , the associated
pencil satisfies L(λ) = λX + Y ∈ DL(P) if and only if v = w.

Once an ansatz vector v has been chosen, a pencil from DL(P)
is uniquely determined.
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Are the classes large enough?

Theorem

For any regular n × n matrix polynomial P(λ) of degree k,
almost every pencil in L1(P) (L2(P)) is a linearization for P(λ).
For any regular matrix polynomial P(λ), pencils in DL(P) are
linearizations of P(λ) for almost all v ∈ Fk .

’Almost every’ means for all but a closed, nowhere dense set of
measure zero.
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Linearization property for DL(P)

Theorem
Consider an n × n matrix polynomial P(λ) of degree k. Then for
given ansatz vector v = w = [v1, . . . , vk ]T the associated linear
pencil in DL(P) is a linearization if and only if no root of the
v-polynomial

p(v ; x) := v1xk−1 + . . . + vk−1x + vk

is an eigenvalue of P.
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Example
Consider P(λ) = λ3A + λ2B + λC + D and

L(λ) = λ

 A 0 −A
0 −A− C −B − D
−A −B − D −C

+

 B A + C D
A + C B + D 0

D 0 −D


in DL(P) with ansatz vector v =

[
1 0 −1

]T ,

p(v ; x) = x2 − 1.

Using the check one easily finds that

det
[

A + C B + D
B + D A + C

]
6= 0

is the linearization condition for L(λ).
This is equivalent to saying that neither −1 nor +1 is an
eigenvalue of the matrix polynomial P(λ).
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Polynomial evps with structure

P(λ) x = 0,

where
. P(λ) is polynomial matrix valued function;
. x is a real or complex eigenvector;
. λ is a real or complex eigenvalue;
. and P(λ) has some further structure.
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Which structures?

Definition
A nonlinear matrix polynomial P(λ) of degree k is called
. T-even (H-even) if P(λ) = PT (−λ) (P(λ) = PH(−λ));
. T-palindromic (H-palindromic) if P(λ) = PT (λ−1)λk

(P(λ) = PH(λ−1)λk .
. T-symmetric (Hermitian) if P(λ) = PT (λ) (P(λ)H = P(λ));

Nonlinear EVPs 63 / 203



Examples

. A T-even quadratic problem has the form λ2M + λG + K with
M = MT ,K = K T ,G = −GT .

. A H-palindromic cubic problem has the form
λ3A3 + λ2A2 + λA1 + A0 where A3 = AH

0 ,A2 = AH
1 .

. A quadratic symmetric problem has the form λ2M + λD + K ,
with M = MT ,K = K T ,D = DT .
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Properties of even matrix functions

Lemma

Consider a T-even eigenvalue problem P(λ)x = 0. Then
P(λ)x = 0 if and only if xT P(−λ) = 0, i.e., the eigenvalues
occur in pairs λ, −λ, or quadruples λ, −λ, λ̄, −λ̄ in the real
case.
Consider a H-even eigenvalue problem P(λ)x = 0. Then
P(λ)x = 0 if and only if xHP(−λ̄) = 0, i.e., the eigenvalues
occur in pairs λ, −λ̄
Even matrix functions have Hamiltonian spectrum, they
generalize Hamiltonian problems λI +H, where H is
Hamiltonian.
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Properties of palindromic matrix functions

Lemma

Consider a T-palindromic eigenvalue problem P(λ)x = 0.
Then P(λ)x = 0 if and only if xT P(1/λ) = 0, i.e., the
eigenvalues occur in pairs λ, 1/λ or quadruples λ, 1/λ, λ̄, 1/λ̄
in the real case.
Consider a H-palindromic eigenvalue problem P(λ)x = 0.
Then P(λ)x = 0 if and only if xT P(1/λ̄) = 0, i.e., the
eigenvalues occur in pairs λ, 1/λ̄.
Palindromic matrix functions have symplectic spectrum, they
generalize symplectic problems λI + S, where S is a
symplectic matrix.
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Properties of symmetric matrix functions

In general symmetric/Hermition matrix functions have no special
symmetries in the spectrum. Left and right eigenvectors to an
eigenvalue, however, are the same.
In some special cases (definite, hyperbolic) it can be shown that
all eigenvalues are real or purely imaginary.
Example Consider the quadratic problem λ2M + K with M,K
real symmetric, M positive definite, K positive semidefinite. Then
the eigenvalues are the square roots of the negative eigenvalues
of −L−1KL−T and thus purely imaginary.
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Even Matrix Polynomials

. Singularities (cracks) in anisotropic materials as functions of
material or geometry parameters

. Optimal control of differential equations

. Gyroscopic systems

. Optimal Waveguide Design,

. H∞ control
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Palindromic Matrix Polynomials

. Excitation of rail tracks by high speed trains

. Periodic surface acoustic wave filters

. Control of (high order) difference equations

. Computation of the Crawford number
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Symmetric/Hermitian Matrix Polynomials

. Mass, spring, damper systems, dynamic simulation of
structures.

. Acoustic field problem.

. Quantum dot simulation.

. . . .
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Structured linearization

Lemma
Consider an n × n even matrix polynomial P(λ) of degree k.

For an ansatz vector v = (v1, . . . , vk )T ∈ Fk the linearization
L(λ) = λX + Y ∈ DL(P) is even, i.e. X = X T and Y = −Y T , if
and only if p(v ; x) is even.

Consider an n × n palindromic matrix polynomial P(λ) of degree
k.

Then, for a vector v = (v1, . . . , vk )T ∈ Fk the linearization
L(λ) = λX + Y ∈ DL(P) is (the permutation of) a palindromic,
if and only if p(v ; x) is palindromic.
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Example

For the palindromic polynomial

P(λ)y = (λ2AT
1 + λA0 + A1)y = 0, A0 = AT

0

a palindromic vector v = [α, α]T , α 6= 0 leads to a palindromic
pencil

(κZ + Z T )z = 0, Z =

[
AT

1 A0 − A1

AT
1 AT

1

]
.

This is a linearization if and only if −1 is not an eigenvalue of
P(λ).
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Symmetric linearizations

For symmetric P, a simple argument shows that every pencil in
DL(P) is also symmetric:
L ∈ DL(P) with ansatz vector v implies that LT is also in DL(P)
with the same ansatz vector v , and then L = LT follows from the
uniqueness.
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Deflation of ’bad eigenvalues’

To have structure preserving linearizations we need to deflate
bad eigenvalues and singular blocks first.

. Open Question: Can we linearize first and then deflate in the
linear problem?

. If so, then we need structure preserving procedures for even
(palindromic) pencils.

. Do we have structured Kronecker forms?
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Structured Kronecker form
To preserve the even, palindromic, symmetric structure, we use
congruence transformations

λÑ + M̃ = λUT NU + UT MU,
λÃT + Ã = λUT AT U + UT AU,
λM̃ + K̃ = λUT MU + UT KU,
λÑ + M̃ = λUHNU + UHMU,
λÃT + Ã = λUT AT U + UT AU,
λM̃ + K̃ = λUHMU + UHKU,

with nonsingular (orthogonal, unitary) U.
What are the structured canonical condensed forms under these
transformations?
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Structured KCF for even pencils

Theorem (Thompson 91)

If N, M ∈ Rn,n with N = −NT ,M = MT , then there exists a
nonsingular matrix X ∈ Cn,n such that

X T (λN + M)X = diag(BS ,BI ,BZ ,BF),

BS = diag(Oη,Sξ1 , . . . ,Sξk ),

BI = diag (I2ε1+1, . . . , I2εl +1, I2δ1 , . . . , I2δm ) ,

BZ = diag (Z2σ1+1, . . . ,Z2σr +1,Z2ρ1 , . . . ,Z2ρs ) ,

BF = diag(Rφ1 , . . . ,Rφt , Cψ1 , . . . , Cψu )

This structured Kronecker canonical form is unique up to
permutation of the blocks.
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Properties of blocks

1. Oη = λ0η + 0η;
2. Each Sξj is a (2ξj + 1)× (2ξj + 1) block that combines a right
singular block and a left singular block, both of minimal index ξj .
It has the form

λ



1 0
... . . .

1 0
−1

... 0
−1 ...

0


+



0 1
... . . .

0 1
0

... 1
0 ...

1


;
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3. Each I2εj +1 is a (2εj + 1)× (2εj + 1) block that contains a
single block corresponding to the eigenvalue∞ with index
2εj + 1. It has the form

λ



1 0
... . . .

1 0
−1 0

... 0
−1 ...

0


+



0 1
... . . .

0 1
0 s

. . . 1
0 ...

1


,

where s ∈ {1,−1} is the sign-index or sign-characteristic of the
block;
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4. Each I2δj is a 4δj × 4δj block that combines two 2δj × 2δj
infinite eigenvalue blocks of index δj . It has the form

λ



1 0
... . . .

1 ...

0
−1 0

... . . .

−1 ...

0


+



1
...

1
1

...

1

 ;
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5. Each Z2σj +1 is a (4σj + 2)× (4σj + 2) block that combines two
(2σj + 1)× (2σj + 1) Jordan blocks corresponding to the
eigenvalue 0. It has the form

λ



1
...

1
−1

...

−1

+



1 0
... . . .

1 ...

0
1 0

... . . .

1 ...

0


;
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6. Each Z2ρj is a 2ρj × 2ρj block that contains a single Jordan
block corresponding to the eigenvalue 0. It has the form

λ



1
...

1
−1

...

−1

+



1 0
... . . .

1 ...

s 0
1 0

... . . .

1 ...

0


,

where s ∈ {1,−1} is the sign characteristic of this block;
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7. Each Rφj is a 2φj × 2φj block that combines two φj × φj Jordan
blocks corresponding to nonzero real eigenvalues aj and −aj . It
has the form

λ



1
...

1
−1

...

−1

+



1 aj
. . . . . .

1 ...

aj
1 aj

. . . . . .

1 ...

aj


.
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8 a. Either Cψj is a 2ψj × 2ψj block combining two ψj × ψj Jordan
blocks with purely imaginary eigenvalues ibj ,−ibj (bj > 0). It has
the form

λ



1
...

1
−1

...

−1

+ s



1 bj
. . . . . .

1 ...

bj
1 bj

. . . . . .

1 ...

bj


,

where s ∈ {1,−1} is the sign characteristic.
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8 b. or Cψj is a 4ψj × 4ψj block combining ψj × ψj Jordan blocks
for each of the complex eigenvalues
aj + ibj ,aj − ibj ,−aj + ibj ,−aj − ibj (with aj 6= 0 and bj 6= 0). In this
case it has form

λ



Ω
. . .

Ω

−Ω
. . .

−Ω

+



Ω Λj
. . . . . .

Ω . . .

Λj
Ω Λj

. . . . . .

Ω . . .

Λj


with Ω =

[
0 1
1 0

]
and Λj =

[
−bj aj
aj bj

]
.
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Structured KCF for palindromic pencils

Theorem (Horn/Sergejchuk 06, Schröder 06)

If A ∈ Rn,n, then there exists a nonsingular matrix X ∈ Rn,n such
that

λX T AT X + X T AX = diag(λA1 + AT
1 , . . . , λAT

` + A`)

is in structured Kronecker form.
This structured Kronecker canonical form is unique up to
permutation of blocks, i.e., the kind, size and number of the
blocks as well as the sign characteristics are characteristic of the
pencil λAT + A.
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Properties of blocks

Sp =



0
0p+1 . . . 1

0 ...

1
1 0

... . . . 0p
1 0


∈ R2p+1,2p+1,p ∈ N0;

L1,p(λ) =



λ
0p . . . 1

... . . .

λ 1
1

...

. . . 0p
1


∈ R2p,2p,

where p ∈ N, λ ∈ R, |λ| < 1;
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L2,p(α, β) =



Λ

02p . . .
I2

. . .
. . .

Λ I2
I2

. . .

. . .
02p

I2


∈ R4p,4p ,

where p ∈ N,Λ =

[
α −β
β α

]
, α, β ∈ R \ {0}, β < 0, |α + iβ| < 1;

σU1,p = σ



1
0b p

2 c
. . .

1

1 . . .

1 1
1

. . .
0b p

2 c
1


∈ Rp,p , where p ∈ N is odd,

σ ∈ {1,−1};
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U2,p = Lp(1) =



1
0p . . .

1
. . .

. . .

1 1
1

. . .

. . .
0p

1


∈ R2p,2p ,

where p ∈ N is even;

U3,p = Lp(−1) =



−1
0p . . .

1
. . .

. . .

−1 1
1

. . .

. . .
0p

1


∈ R2p,2p , where p ∈ N is

odd;
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σU4,p = σ



−1
0 p

2
. . . 1

... . . .

−1 1
1 1

...

. . .

1


∈ Rp,p,

where p ∈ N is even, σ ∈ {1,−1};
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σU5,p(α, β) = σ



Λ
02b p

2 c
. . . I2

Λ . . .

Λ
1
2 I2

I2
. . . 02b p

2 c
I2


∈ R2p,2p,

where p ∈ N is odd, |α + iβ| = 1, β < 0,Λ =

[
α −β
β α

]
,

Λ
1
2 is defined as rotation matrix with rotation angle φ

2 ∈ (0, π),
where φ = arctan(β

α
) is the rotation angle of the rotation matrix Λ,

σ ∈ {1,−1};
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σU6,p(α, β) = σ



Λ
02 p

2
. . . I2

. . . . . .

Λ I2
I2 I2

. . .

. . .

I2


∈ R2p,2p,

where p ∈ N is even,

|α + iβ| = 1, β < 0,Λ =

[
α −β
β α

]
, σ ∈ {1,−1}.
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Other structured KCF

. Analogous results for symmetric pencils.

. Analogous results exist for complex even pencils.

. Analogous results exist for complex palindromic pencils.

. Hermitian pencils and complex T -symmetric pencils can be
treated like complex even pencils (Set λ = iµ).
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Consequences

. Even, palindromic, symmetric KCF for pencils exist.

. But the transformation matrix X may be arbitrarily
ill-conditioned.

. The even, palindromic, symmetric KCF cannot be computed
well with finite precision algorithms.

. The information given in the even, palindromic, symmetric
KCF is essential for the understanding of the computational
problems.

. We need alternatives, from which we can derive the
information, that allows the deflation of singular blocks and
blocks associated with 0,∞ (1 and −1).
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Why not just λQNU + QMU ?

Example Consider a 3× 3 even pencil with matrices

N = Q

 0 1 0
−1 0 0
0 0 0

QT , M = Q

 0 0 1
0 1 0
1 0 0

QT ,

where Q is a random real orthogonal matrix. The pencil is
congruent to

λ

 0 1 0
0 0 1
0 0 0

−
 1 0 0

0 1 0
0 0 1


For different randomly generated orthogonal matrices Q the QZ
algorithm in MATLAB produced all variations of eigenvalues that
are possible in a general 3× 3 pencil.
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Structured staircase form for even pencils

Theorem (Byers/M./Xu 07)
For λN + M with N = −NT ,M = MT ∈ Rn,n, there exists a
real orthogonal matrix U ∈ Rn,n, such that

UT NU =

N11 . . . . . . N1,m N1,m+1 N1,m+2 . . . N1,2m 0
.
.
.

. . .
.
.
.

.

.

.
.
.
. . . .

. . .

.

.

.
. . .

.

.

.
.
.
. Nm−1,m+2 . . .

−NT
1,m · · · · · · Nm,m Nm,m+1 0

−NT
1,m+1 . . . . . . −NT

m,m+1 Nm+1,m+1

−NT
1,m+2 · · · −NT

m−1,m+2 0

.

.

. . . .
. . .

−NT
1,2m

. . .

0



n1
.
.
.
.
.
.

nm
l
qm

.

.

.
q2
q1
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UT MU =

M11 · · · · · · M1,m M1,m+1 M1,m+2 . . . . . . M1,2m+1
.
.
.

. . .
.
.
.

.

.

.
.
.
. . . .

.

.

.
. . .

.

.

.
.
.
.

.

.

. . . .

MT
1,m . . . . . . Mm,m Mm,m+1 Mm,m+2

MT
1,m+1 . . . . . . MT

m,m+1 Mm+1,m+1

MT
1,m+2 . . . . . . MT

m,m+2
.
.
. . . .

.

.

. . . .

MT
1,2m+1



n1
.
.
.
.
.
.

nm
l
qm

.

.

.

.

.

.
q1

,

where q1 ≥ n1 ≥ q2 ≥ n2 ≥ . . . ≥ qm ≥ nm,
Nj,2m+1−j ∈ Rnj ,qj+1 , 1 ≤ j ≤ m − 1,

Nm+1,m+1 =

[
∆ 0
0 0

]
, ∆ = −∆T ∈ R2p,2p

,

Mj,2m+2−j =
[

Γj 0
]
∈ Rnj ,qj , Γj ∈ Rnj ,nj , 1 ≤ j ≤ m,

Mm+1,m+1 =

[
Σ11 Σ12
ΣT

12 Σ22

]
, Σ11 = ΣT

11 ∈ R2p,2p
, Σ22 = ΣT

22 ∈ Rl−2p,l−2p
,

and the blocks Σ22 and ∆ and Γj , j = 1, . . . ,m are nonsingular.
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. The middle block

λNm+1,m+1 + Mm+1,m+1 = λ

[
∆ 0
0 0

]
+

[
Σ11 Σ12

ΣT
12 Σ22

]
,

contains all the blocks associated with finite eigenvalues and
1× 1 blocks associated with the eigenvalue∞.

. The finite spectrum of is obtained from the even pencil
λ∆ + Σ = λ∆ + (Σ11 − Σ12Σ−1

22 ΣT
12) with ∆ invertible.

. The matrix ∆ has a skew-Cholesky factorization ∆ = LJLT ,

with J =

[
0 I
−I 0

]
,

. The spectral information can be obtained from the
Hamiltonian matrix H = JL−1ΣL−T .
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Consequences, other cases

. Similar staircase forms for palindromic, symmetric pencils.

. All the information about the invariants (Kronecker indices)
can be read off. Byers/M./Xu 07.

. Bad eigenvalues can be deflated first.

. Singularities and high order blocks to the eigenvalue 0,∞ can
be deflated.

. The best treatment of infinite eigenvalue in the middle block
λNm+1,m+1 + Mm+1,m+1 is unclear.

. Is the use of skew-Cholesky better than projecting out the
nullspace with unitary (symplectic) transformations?
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Computational procedure

. The procedure consists of a recursive sequence of singular
value decompositions.

. The staircase form essentially determines a least generic even
pencil within the rounding error cloud surrounding λN + M.

. Rank decisions face the usual difficulties and have to be
adapted to the recursive procedure.

. Similar difficulties as in standard staircase form, GUPTRI.

. What to do in case of doubt? In applications, assume worst
case.

. Perturbation analysis is essentially open for singular and
higher order blocks associated with∞.
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Example revisited

Our MATLAB implementation of the structured staircase
Algorithm determined that in the cloud of rounding-error small
perturbations of each even λN + M, there is an even pencil with
structured staircase form

λ

 0 1 0
−1 0 0

0 0 0

−
 0 0 1

0 1 0
1 0 0

 ,
with one block I3 with sign-characteristic 1.
The algorithm successfully located a least generic even pencil
within the cloud.
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Equivalence for matrix polynomials

Definition
Two m × n matrix polynomials P(λ),Q(λ) are said to be
equivalent, denoted P(λ) ∼ Q(λ), if there exist unimodular
matrix polynomials E(λ) and F (λ) of size m ×m and n × n,
respectively, such that

E(λ)P(λ)F (λ) = Q(λ).

The canonical form of a matrix polynomial P(λ) under
equivalence transformations is the Smith form of P(λ).
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The Smith form

Theorem (Smith form)

Let P(λ) be an m × n matrix polynomial over an arbitrary field F.
Then there exists r ∈ N, and unimodular matrix polynomials
E(λ) and F (λ) of size m ×m and n × n, respectively, such that

E(λ)P(λ)F (λ) = diag(d1(λ), . . . ,dmin {m,n}(λ)) =: D(λ),

where d1(λ), . . . ,dr (λ) are monic i.e., the highest degree terms
all have coefficient 1, dr+1(λ), . . . ,dmin {m,n}(λ) are identically
zero, and dj(λ) is a divisor of dj+1(λ) for j = 1, . . . , r − 1.
Moreover, D(λ) is unique.

The r nonzero diagonal elements dj(λ) in the Smith form are
called the invariant polynomials or invariant factors of P(λ).
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Greatest common divisors

. For an m × n matrix A, let α ⊆ {1, . . . ,m} and β ⊆ {1, . . . ,n}
be arbitrary index sets of cardinality j ≤ min(m,n). Then Aαβ

denotes the j × j submatrix of A in rows α and columns β; the
determinant det Aαβ is called the αβ-minor of order j of A.

. For d(x) 6= 0, it is standard notation to write d(x) |p(x) to
mean that d(x) is a divisor of p(x), i.e., there exists some q(x)
such that p(x) = d(x)q(x).

. Note that d(x) |0 is true for any d(x) 6= 0. Extending this
notation to a set S of scalar polynomials, we write d |S to
mean that d(x) divides each element of S, i.e., d(x) is a
common divisor of the elements of S.

. The greatest common divisor (or GCD) of a set S containing at
least one nonzero polynomial is the unique monic polynomial
g(x) such that g(x) |S, and if d(x) |S then d(x) |g(x) .
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Characterization of invariant polynomials
Theorem
Let P(λ) be an m × n matrix polynomial over a field F with a
given Smith form. Set p0(λ) ≡ 1. For 1 ≤ j ≤ min(m,n), let
pj(λ) ≡ 0 if all minors of P(λ) of order j are zero; otherwise, let
pj(λ) be the greatest common divisor of all minors of P(λ) of
order j. Then the number r in Smith form is the largest integer
such that pr (λ) 6≡ 0. Furthermore, the invariant polynomials
d1(λ), . . . ,dr (λ) of P(λ) are ratios of GCDs given by

dj(λ) =
pj(λ)

pj−1(λ)
, j = 1, . . . , r ,

the remaining diagonal entries are given by

dj(λ) = pj(λ) ≡ 0 , j = r + 1, . . . ,min {m,n}.
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Elementary divisors

. When the field F is algebraically closed, the invariant
polynomials are unique products of powers of linear factors

di(λ) = (λ− λi,1)αi,1 · · · (λ− λi,ki )
αi,ki , i = 1, . . . , r ,

where λi,1, . . . , λi,ki ∈ F are distinct and αi,1, . . . , αi,ki ∈ N.
. The factors (λ− λi,j)

αi,j , j = 1, . . . , ki , i = 1, . . . , r are called the
elementary divisors of P(λ).

. Some polynomials (λ− λ0)α may occur multiple times as
elementary divisors of P(λ), because they may be factors in
distinct invariant polynomials di1(λ) and di2(λ).

. For a matrix A ∈ Cn×n, each elementary divisor (λ− λ0)α of
the matrix pencil λI − A corresponds to a Jordan block of size
α× α associated with the eigenvalue λ0 of A.
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Jordan structure

Definition (Jordan structure of a matrix polynomial)

For an m× n matrix polynomial P(λ) over the field F, the Jordan
structure of P(λ) is the collection of all the finite and infinite
elementary divisors of P(λ), including repetitions, where P(λ) is
viewed as a polynomial over the algebraic closure F.
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Companion linearization

The classical companion linearization for polynomial eigenvalue
problems

P(λ)x =
k∑

i=0

λiAix

is

L(λ) = λ


Ak 0 · · · 0
0 In

. . . ...
... . . . . . . 0
0 · · · 0 In

+


Ak−1 Ak−2 · · · A0

−In 0 · · · 0
... . . . . . . ...
0 · · · −In 0

 .
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Companion matrix

If P(λ) is regular and Ak invertible then we form the companion
matrix

CP =


A−1

k Ak−1 A−1
k Ak−2 · · · A−1

k A0

−In 0 · · · 0
... . . . . . . ...
0 · · · −In 0

 .
We have

det P(λ) = det(λI + CP) det(Ak ).
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Resolvents
Theorem
For every complex number λ that is not an eigenvalue of the
regular n × n matrix polynomial P(λ) with nonsingular leading
coefficient

P(λ)−1 = S1(λI + CP)−1T1

where

S1 =
[

0 . . . 0 In
]
, T1 =

 A−1
k
...
0


Any triple (S,C,T ) such that S = S1M, C = M−1CPM,
T = M−1T1 is called a standard triple and we have

P(λ)−1 = S(λI + C)−1T .
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Canonical form of linearization

Lemma
Let (S,C,T ) be a standard triple for an n × n matrix polynomial
P(λ) with nonsingular leading coefficient, then

Q =


SCk−1

...
SC
S


is invertible and CP = QCQ−1

A standard triple that brings CP to Jordan form is called a Jordan
triple.
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Jordan triples and matrix equations

The blocks of Jordan triples are constructed from the Jordan
chains of P(λ) and if (S,C,T ) is a Jordan triple then the matrix
equation

A−1
k Ak−1SCk + . . .A−1

k A1SC + A−1
k A0S = 0

holds.
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Lemma
Suppose that D(λ) = diag

(
d1(λ),d2(λ), . . . ,dn(λ)

)
is the Smith

form of the T -even n × n matrix polynomial P(λ). Then the
following statements hold:

a) Each d`(λ) is alternating.
b) If P(λ) is regular, and ν is the number of indices ` for which

the invariant polynomial d`(λ) is odd, then ν is even.
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Jordan structure of even mat. polys
Theorem (Jordan struct. of T -altern. matrix poly’s)

Let P(λ) be an n × n T -alternating matrix polyn. of degree k.
Then the Jordan structure of P(λ) is as follows.

(a) If (λ− λ0)α1 , . . . , (λ− λ0)α` are the elem. div. to λ0 6= 0, then
the elem. div. to −λ0 are (λ + λ0)α1 , . . . , (λ + λ0)α`.

(b) Zero elementary divisors λβ:
(i) if P(λ) is T -even, then for each odd β ∈ N, λβ has even multip.

(ii) if P(λ) is T -odd, then for each even β ∈ N, λβ has even multip.
(c) Infinite elementary divisors:

(i) Suppose P(λ) is T -even and k is even, or P(λ) is T -odd and k is
odd. Then revP(λ) is T -even, and for each odd γ ∈ N, the inf.
elem. div. of P(λ) of degree γ has even multiplicity.

(ii) Suppose P(λ) is T -even and k is odd, or P(λ) is T -odd and k is
even. Then revP(λ) is T -odd, and for each even γ ∈ N, the inf.
elem. div. of P(λ) of degree γ has even multiplicity.
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Jordan structure T-even pencils
Corollary

Let L(λ) = λX + Y be an n × n T -alternating pencil. Then the
Jordan structure of L(λ) has the following properties:

(a) Nonzero elementary divisors occur in pairs: if
(λ− λ0)α1 , . . . , (λ− λ0)α` are the elem. div. of L(λ) to λ0 6= 0,
then the elem. div. of L(λ) to −λ0 are (λ+ λ0)α1 , . . . , (λ+ λ0)α`.

(b) If L(λ) is T -even, then the following elem. div. occur with even
multip.

(i) for each odd β ∈ N, the elem. div. λβ, and
(ii) for each even γ ∈ N, the elem. div. at∞ of degree γ.

(c) If L(λ) is T -odd, then the following elem. div. occur with even
multi.:

(i) for each even β ∈ N, the elem. div. λβ, and
(ii) for each odd γ ∈ N, the elem. div. at∞ of degree γ.
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Example

Consider the T -even matrix polynomial

P(λ) = λ2
[

1 0
0 0

]
−
[

0 0
0 1

]
= diag(λ2,−1)

Both P(λ) and revP(λ) = diag(1,−λ2) have the same Smith form
diag(1, λ2); thus P(λ) has elementary divisor λ2 with odd
multiplicity, and also an even degree elementary divisor at∞
with odd multiplicity.
But this Jordan structure is incompatible with every T -even
pencil. and with every T -odd pencil. Thus we see a reason why
P(λ) can have no T -alternating strong linearization.
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Consequences, Questions.

. The Jordan structure of any odd degree T -alternating matrix
polynomial P(λ) is completely compatible with that of a
T -alternating pencil of the same parity.

. This strongly suggests that it should be possible to construct a
structure-preserving strong linearization for any such P(λ).

. A question is whether compatibility of Jordan structures is also
sufficient to imply the existence of a T -alternating strong
linearization.

. A more refined question concerns the existence of
T -alternating linearizations that preserve all the spectral
information of P(λ), comprised not only of its finite and infinite
elementary divisors, but also (when P(λ) is singular) of its
Kronecker indices. See De Teran, Dopico Mackey 201x
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Strong linearizations

Generalization of (Antoniou and Vologiannidis 2004).

Lemma
Let P(λ) be any n × n matrix polynomial of odd degree, regular
or singular, over an arbitrary field F. Then SP(λ) is a strong
linearization for P(λ).

Theorem
Every T -alternating polynomial P(λ) of odd degree has a
T -alternating strong linearization with the same parity as P.
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Consequences, Questions

. We know already that there are even degree T -alternating
matrix polynomials that, because of Jordan structure
incompatibilities, do not have any T -alternating strong
linearization.

. If we put such cases aside, however, and consider only
T -alternating matrix polynomials whose Jordan structure is
compatible with at least some type of T -alternating pencil,
then is that compatibility sufficient to guarantee the existence
of a T -alternating strong linearization? This is partially open.
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The Regular Case
Theorem
Let P(λ) be a regular n × n T -alternating matrix polynomial of
even degree k ≥ 2, over the field F = R or F = C.

(a) If P(λ) is T -even, then P(λ) has
I a T -even strong linearization if and only if for each even γ ∈ N,

the infinite elementary divisor of degree γ occurs with even
multiplicity.

I a T -odd strong linearization if and only if for each even β ∈ N, the
elementary divisor λβ occurs with even multiplicity.

(b) If P(λ) is T -odd, then P(λ) has
I a T -even strong linearization if and only if for each odd β ∈ N, the

elementary divisor λβ occurs with even multiplicity.
I a T -odd strong linearization if and only if for each odd γ ∈ N, the

infinite elementary divisor of degree γ occurs with even
multiplicity.
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Palindromic polynomials

Mackey, Mackey, Mehl, M., 2010
. Many of the results for the even case carry over to the

palindromic case.
. The smith form of a T palindromic
. But there are differences, these have to do with the difference

between grade and degree. λ2I + λI is not palindromic as a
degree 2 but as degree 3 matrix polynomial.

. We don’t have if and only if results.

. Many open questions.
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Wilkinson Backward Error Analysis

Consider a set of data D, a computational problem and a
solution space S. Suppose that the exact solution is described
by mapping φ that maps the data d ∈ D to a solution s ∈ S.

φ : D → S
d 7→ s

In finite precision arithmetic we have an inaccurate solution φ̃
and get an inaccurate answer s̃.
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Wilkinson Backward Error Analysis

. Classical Wilkinson backward error analysis. Show that
s̃ = φ(d̃), i.e. the result is the exact result with perturbed data
d̃ and an equivalent backward error η = d̃ − d .

. Then analyse via perturbation analysis what the effect of a
perturbation of the data on the result is.

. The amplification factor for the error in the data is called the
condition number.
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Backward error analysis for P(λ)x = 0.

. Data: coefficients Ai , i = 0, . . . , k .

. Solution: λ, x .

. Method: Eigenvalue solver.

For the perturbation analysis we have to analyze how the
eigenvalues λ and the eigenvectors x behave under perturbation
of the coefficients Ai , i = 0, . . . , k , i.e. we have to determine the
condition number.
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Linearization

. We do not solve P(λ)x = 0, but L(λ)z = 0, where the last part
of the vector z is x .

. Is the condition number of P(λ)x = 0 and L(λ)z = 0 different?

. If yes can we make the difference better by choosing different
linearizations?

. What about structure preservation, does that help?
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Conditioning of polyn. evps

Definition
Let λ be a simple nonzero finite eigenvalue of P(λ) =

∑k
i=0 λ

iAi

and let x , y be the associated right and left eigenvectors.
The norm-wise condition number (with respect to perturbations
∆P =

∑k
i=0 λ

i∆Ai) is defined as

κP(λ) = lim sup
ε→0

{
|∆λ|
ε|λ|

: (P + ∆P)(λ + ∆λ)(x + ∆x) = 0,

‖∆Ai‖ ≤ εωi , i = 0,1, . . . , k}

where the weights ωi allow to put different measures on the
coefficients.
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Homogeneous cond. number
Introduce homogeneous coordinates and write
P(α, β) =

∑k
i=0 α

iβk−iAi with λ ∼ α/β, 0 ∼ (0,1),∞ ∼ (1,0).

Theorem (Dedieu/Tisseur 2003)

Let (α, β) be a simple eigenvalue of P(α, β) and let x , y be the
associated right and left eigenvectors.
The norm-wise condition number (with respect to perturbations
∆P =

∑k
i=0 α

iβk−i∆Ai) is

κP(α, β) =

(
k∑

i=0

|α|2i |β|2(k−i)w2
i

)1/2
‖x‖2‖y‖2

|yH(β̄ d
dαP − ᾱ d

dβP)|(α,β)x |

The condition number is independent of the scaling in (α, β) and
it reduces to the Wilkinson condition number for linear evps.
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Conditioning of product maps

. Our solution map

φ : D → S
d 7→ s

is actually composed as φ = φ2(φ1(d)) where φ1 describes the
linearization and φ2 the solution of the linearized problem.

. If one of the maps φi is highly ill-conditioned then so is the
product map, even if φ is well-conditioned.

. Usually the linearization itself is harmless computationally, so
we need to analyze the conditioning of the linearization
L(α, β) = αX + βY .
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Conditioning of linearizations
Let

Λα,β = [αk−1, αk−2β, . . . , βk−1]T , w = Λ̄α,β ⊗ y , z = Λα,β ⊗ x

Theorem (Higham/Mackey/Tisseur 2006)

Let (α, β) be a simple eigenvalue of P with right and left
eigenvectors x , y, respectively.
Then for any pencil L(α, β) = αX + βY ∈ DL(P) that is a
linearization of P, with ansatz vector v,

κL(α, β, v) =

√
|α|2ω2

X + ‖β|2ω2
Y

|p(α, β; v)|
‖Λα,β‖‖x‖2‖y‖2

|yH(β̄ d
dαP − ᾱ d

dβP)|(α,β)x |
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Optimizing the cond. number
Choose the weights ωX = ‖X‖2, ωy = ‖Y‖2 and set

ρ =
maxi ‖Ai‖2

min(‖A0‖2, ‖Ak‖2)

Theorem
Let (α, β) be a simple eigenvalue of P with right and left
eigenvectors x , y, respectively.
Then for any pencil L(α, β) = αX + βY ∈ DL(P) that is a
linearization of P:

κL(α, β, e1) ≤ ρk3/2 inf
v
κL(α, β, v), if A0 is nonsing. and |α| ≥ |β|;

κL(α, β, ek ) ≤ ρk3/2 inf
v
κL(α, β, v), if Ak is nonsing. and |α| ≤ |β|.

Thus always one e1 or ek will a be an almost optimal choice.
Nonlinear EVPs 134 / 203



Backward errors

Definition
Let λ be a simple nonzero finite eigenvalue of P(λ) =

∑k
i=0 λ

iAi

and let x , y be the associated right and left eigenvectors.
The norm-wise backward error (with respect to perturbations
∆P =

∑k
i=0 λ

i∆Ai) is defined as

ηP(λ) = min {ε : (P + ∆P)(λ)x = 0,
‖∆Ai‖ ≤ ε‖Ai‖,i = 0,1, . . . , k .}
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Backward error

Theorem (Tisseur 2001)

Let λ be a simple finite eigenvalue of P(λ) and let x , y be the
associated right and left eigenvectors.
The backward errors then are

ηP(λ, x) =
‖P(λ)x‖2

(
∑k

i=0 |λi |‖Ai‖2)‖x‖2

ηP(yH , λ) =
‖yHP(λ)‖2

‖y‖2(
∑k

i=0 |λi |‖Ai‖2)
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Homogeneous backward error

Theorem (Higham, Li, Tisseur 2007)

Let λ be a simple finite eigenvalue of P(λ) and let x , y be the
associated right and left eigenvectors.
The backward errors then are

ηP(α, β, x) =
‖P(α, β)x‖2

(
∑k

i=0 |αi ||βk−i |‖Ai‖2)‖x‖2

ηP(yH , α, β) =
‖yHP(α, β)‖2

‖y‖2(
∑k

i=0 |αi ||βk−i |‖Ai‖2)
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Backward error ratio

Theorem (Higham, Li, Tisseur 2007)

Let (α, β) be a simple eigenvalue of a regular P(α, β) and let x
be the associated right eigenvector. Let L(α, β) ∈ DL(P) be a
linearization with unit norm ansatz vector v with r nonzeros and
let z be the corresponding ev. of L.
Then

ηP(α, β, x)

ηL(α, β, z)
≤ kr 1/2 (|α|+ |β|)‖Λα,β‖maxi ‖Ai‖2‖z‖2∑k

i=0 |αi ||βk−i |‖Ai‖2)‖x‖2
≤ k3/2r 1/2ρ

‖z‖2

‖x‖2
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Scaling

Consider a quadratic polynomial P(λ) = λ2A + λB + C and let

a = ‖A‖, b = ‖B‖, c = ‖C‖

and choose γ =
√

c/a. Then with λ = µγ it was shown in Fan,
Lin, Van Dooren 2004

P(λ) = µ2(γ2)A + µ(γB) + C

that this choice of γ is the choice that minimizes ρ.
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Example
Ratios of backward error ηP/ηC1
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Structured vs. unstructured perturb.

. Structured condition numbers are typically less than or equal
than the unstructured ones. See Adhikari/Alam 2009,
Ahmad/Mehmann 2010.

. The structured backward errors are typically less than or
equal than the unstructured ones.

. The formulas are pretty ugly.

. Examples are difficult. Consider a 4× 4 even pencil with two
purely imaginary eigenvalues iα1, iα2 and eigenvalues λ,−λ̄,
with nonzero real part.
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Outline

1 Motivation and Applications
2 Normal and condensed forms
3 Matrix Polynomials
4 New Classes of Linearizations
5 Structured polynomial Evps.
6 Structured Linearization
7 Structured canonical forms
8 Structured Staircase Form
9 Smith form and invariant polynomials

10 Backward error analysis
11 Numerical methods
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Typical questions

. Find all eigenvalues λ and associated eigenvectors x for a
given parameter value α.

. Find some important eigenvalues λ and associated
eigenvectors x for a given parameter α.

. Find all eigenvalues in a given subset of C for a given
parameter α.

. Optimize eigenvalue positions over parameter set.

. . . ..
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Small scale problems

Small scale problems n several 1000, compute all the
eigenvalues.
. QR algorithm (LAPACK, MATLAB (eig),. . . ) for P(λ) = λI − A
. QZ algorithm (LAPACK, MATLAB (eig) ,. . . ) for

P(λ) = λA1 + A0 regular, square.
. GUPTRI for P(λ) = λA1 + A0 general.
. QZ, GUPTRI algorithm (LAPACK, MATLAB (polyeig),. . . ) for

P(λ) =
∑k

i=0 λ
iAi via linearization.
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The QZ algorithm

Given a regular pencil λA1 + A0

. First determine unitary/orthogonal P,Q such that PA1Q = T1

is upper triangular and PA0Q = H0 is upper Hessenberg.
. Deflate eigenvalues∞
. Apply implicitly the QR algorithm to the upper Hessenberg

matrix T−1
1 H0 without ever forming it.

. After convergence we have PA1Q = T1 and PA0Q = T0

(quasi)-upper triangular.
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Recent developments

. Aggressive deflation, block orientation. Kågström/Kressner
2006-2008

. New Lapack version

. High performance versions in Scalapack ?

. As long as there is enough storage, it can be applied to full
dense matrices of dimension several 10000.
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Summary full dense methods

. Good linearization plus full dense QZ algorithm solves many
problems.

. As a quick solution it may be the best to do.

. For larger problems polyeig, or a good linearization and eigs
are good choices.

. Special methods for even and palindromic pencils
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Newton’s method

Consider P(λ)x = 0 where P is an arbitrary matrix function.
Kublanovskaya 1969: Use a QR-decomposition with column
pivoting P(λ)Π(λ) = Q(λ)R(λ), where Π(λ) is such that
|r11(λ)| ≥ |r22(λ)| ≥ · · · ≥ |rnn(λ)|.
Then λ is an eigenvalue if and only if rnn(λ) = 0.
Applying Newton’s method, one obtains

λk+1 = λk −
1

eH
n Q(λk )HP ′(λk )Π(λk )R(λk )−1en

for approximations to an eigenvalue.
Approximations to left and right eigenvectors can be obtained
from

yk = Q(λk )en and xk = Π(λk )R(λk )−1en.
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Analysis

. Method converges quadratically.

. This relatively simple idea is not efficient, since it computes
eigenvalues one at a time and needs several O(n3)
factorizations per eigenvalue.

. It is, however, useful in the context of iterative refinement of
computed eigenvalues and eigenvectors.
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Nonlinear inverse iteration
. For Ax = λx inverse iteration is equivalent to Newton’s

method for [
Ax − λx
vHx − 1

]
= 0,

where v ∈ Cn is suitably chosen.
. For the nonlinear problem[

P(λ)x
vHx − 1

]
= 0

one step of Newton’s method gives[
P(λk ) P ′(λk )xk

vH 0

] [
xk+1 − xk

λk+1 − λk

]
= −

[
P(λk )xk

vHxk − 1

]
.

. This gives uk+1 := P(λk )−1P ′(λk )xk . and with vHxk+1 = vHxk ,
then λk+1 = λk − vHxk

vHuk+1
.
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Inverse iteration

1: Start with λ0, x0 such that vHx0 = 1
2: for k = 0,1,2, . . . until convergence do
3: solve P(λk )uk+1 = P ′(λk )xk for uk+1

4: λk+1 = λk − (vHxk )/(vHuk+1)
5: normalize xk+1 = uk+1/vHuk+1

6: end for
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Analysis
. This algorithm is a variant of Newton’s method. It converges

locally and quadratically to some (x , λ).
. It was suggested by Ruhe 1973 to use vk = P(λk )Hyk for the

normalization, where yk is an approximation to a left ev.
. Then the update for λ becomes

λk+1 = λk −
yH

k P(λk )xk

yH
k P ′(λk )xk

,

which is the nonlinear Rayleigh functional Lancaster 2002.
. This functional can be interpreted as one Newton step for

solving the equation fk (λ) := yH
k P(λ)xk = 0.

. For linear Hermitian problems this gives cubic convergence if
λk is updated by the Rayleigh quotient Crandall 1951.

. The same holds for symmetric nonlinear problems if we set in
Step 4 λk+1 = p(uk+1), where p(uk+1) denotes the real root of
uH

k+1P(λ)uk+1 = 0 closest to λk .
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Simplified Newton
. Inverse iteration needs a large number of factorizations.
. The obvious idea then is to fix the shift σ i.e. to use,

xk+1 = (A− σI)−1xk .
. However, in general this method does not converge in the

nonlinear case.
. Neumaier 1985. Assume that P(λ) is twice continuously

differentiable, then inverse iteration gives

xk − xk+1 = xk + (λk+1 − λk )P(λk )−1P ′(λk )xk

= P(λk )−1(P(λk ) + (λk+1 − λk )P ′(λk ))xk

= P(λk )−1P(λk+1)xk +O(|λk+1 − λk |2).

. Neglecting the second order term one gets

xk+1 = xk − P(λk )−1P(λk+1)xk .
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Residual inverse iteration

1: Let v be a normalization vector and start with an
approximations σ and x1 to an eigenvalue and corresponding
eigenvector such that vHx1 = 1

2: for k = 1,2, . . . until convergence do
3: solve vHP(σ)−1P(λk+1)xk = 0 for λk+1

or xH
k P(λk+1)xk = 0 if P(λ) is Hermitian and λk+1 is real

4: compute the residual rk = P(λk+1)xk

5: solve P(σ)dk = rk for dk

6: set zk+1 = xk − dk

7: normalize xk+1 = zk+1/vHzk+1

8: end for
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Analysis

Theorem (Neumaier 1985)

If P(λ) is twice continuously differentiable, λ̂ a simple zero of
det P(λ) = 0, and if x̂ is an eigenvector normalized by vH x̂ = 1,
then the residual inverse iteration converges for all σ sufficiently
close to λ̂, and one has the estimate

‖xk+1 − x̂‖
‖xk − x̂‖

= O(|σ − λ̂|) and |λk+1 − λ̂| = O(‖xk − x̂‖q),

where q = 2 if P(λ) is Hermitian, λ̂ is real, and λk+1 solves
xH

k P(λk+1)xk = 0 in Step 3, and q = 1 otherwise.
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Method of successive linear problems

1: Start with an approximation λ1 to an eigenvalue
2: for k = 1,2, . . . until convergence do
3: solve the linear eigenproblem P(λk )u = θP ′(λk )u
4: choose an eigenvalue θ smallest in modulus
5: λk+1 = λk − θ
6: end for
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Analysis

Theorem (Ruhe 1973)

If P is twice continuously differentiable, and λ̂ is an eigenvalue
such that P ′(λ̂) is nonsingular and 0 is an algebraically simple
eigenvalue of P ′(λ̂)−1P(λ̂), then the method of successive linear
problems converges quadratically to λ̂.
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Newton and inverse iteration

. The discussed Newton and inverse iteration methods can be
used for general nonlinear evps.

. For Hermitian problems and real eigenvalues they converge
faster if the eigenvalue approximations are updated using the
Rayleigh functional.

. One typically gets only one eigenvalue/vector at a time.

. Sometimes the methods repeatedly converge to the same ev.

. Deflation is problematic.

. We do not have a guarantee that we find all eigenvalues in a
given set.

. Matrix factorizations are needed to solve the linear system.
With sparse solvers this can be done (if not too often) for very
large sizes MUMPS, UMFPACK, PARDISO, . . . .

Nonlinear EVPs 159 / 203



Safeguarded iteration
For Hermitian problems that allow a variational characterization
of their eigenvalues we can use the safeguarded iteration
Werner 1970, Voss/Werner 1982.
. Let J ⊂ R be an open interval and assume that F (λ) ∈ Cn,n is

a family of Hermitian matrices, where the elements are
differentiable in λ.

. Assume that for every x ∈ Cn \ {0} the real equation

f (λ, x) := xHF (λ)x = 0

has at most one solution λ ∈ J.
. Then f defines a functional ρ on some subset D ⊂ Cn called

Rayleigh functional of the nonlinear evp which generalizes the
Rayleigh quotient for linear pencils F (λ) = λA1 + A0.

. Assume further that xHF ′(ρ(x))x > 0 for every x ∈ D then
differentiating the identity xHF (ρ(x))x = 0 one obtains that the
e’vecs are stationary points of ρ.
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Minimax principle

Under the described assumtions a minimax principle for the
nonlinear eigenproblem holds if the eigenvalues are enumerated
appropriately.

. A value λ ∈ J is an eigenvalue of F (λ)x = 0 if and only if
µ = 0 is an eigenvalue of the matrix F (λ), and by Poincaré’s
max-min principle there exists m ∈ N such that

0 = max
dim V =m

min
x∈V , x 6=0

xHF (λ)x
‖x‖2 .

. One assigns this m to λ as its number and calls λ an m-th
eigenvalue of the problem.
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Minimax theorem
Theorem (Voss/Werner 1982)

Under the above assumptions, for every m ∈ {1, . . . ,n},
F (λ)x = 0 has at most one m-th eigenvalue in J, given by

λm = min
dim V =m,D∩V 6=∅

sup
v∈D∩V

ρ(v).

Conversely, if

λm := inf
dim V =m,D∩V 6=∅

sup
v∈D∩V

ρ(v) ∈ J,

then λm is an m-th eigenvalue of F (λ)x = 0.
The minimum is attained by the invariant subspace of F (λm)
corresponding to its m largest eigenvalues, and the supremum is
attained by any eigenvector of F (λm) corresponding to µ = 0.
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Safeguarded iteration

The enumeration of eigenvalues and the fact that the
eigenvectors are the stationary vectors of the Rayleigh functional
suggests the following Algorithm.

1: Start with an approximation σ1 to the m-th eigenvalue
2: for k = 1,2, . . . until convergence do
3: determine an eigenvector xk corresponding to the

m-largest eigenvalue of F (σk )
4: solve xH

k F (σk+1)xk = 0 for σk+1

5: end for
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Analysis

. If λ1 := infx∈D ρ(x) ∈ J and x1 ∈ D then the iteration converges
globally to λ1.

. If λm ∈ J is an m-th eigenvalue which is simple, then the
iteration converges locally and quadratically to λm.

. Let F (λ) be twice continuously differentiable, and assume that
F ′(λ) is positive definite for λ ∈ J. If, in Step 3 of the
Algorithm, xk is chosen to be an eigenvector corresponding to
the m-th largest eigenvalue of the generalized evp
F (σk )x = µF ′(σk )x , then the convergence is even cubic.
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Evaluation

. Whenever the problem has a variational background and the
eigenvalues are real this is the best method.

. One gets information about the eigenvalues that no other
method provides.

. It can be easily combined with grid refinement and multilevel
approaches.

. It is used in a huge number of applications with great success.

. More information and applications see H. Voss website.
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Nonlinear Newton evp. solver
Nonlinear evp F (λ)x = 0. Apply Newton to function

fw (x , λ) =

[
F (λ)x

wHx − 1

]
= 0.

The Newton system for λk+1 = λk + µk and xk+1 = xk + sk is[
F (λk ) F ′(λk )xk

wH 0

] [
sk

µk

]
= −

[
F (λk )xk

wHxk − 1

]
or

λk+1 = λk −
1

wHF (λk )−1F ′(λk )xk

xk+1 = (λk − λk+1)F (λk )−1F ′(λk )xk .
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Difficulties

. In many applications we want all evs in a given set.

. How do we guarantee that we find all.

. Deflation of computed evs.

. Need to use sparse solvers.

. Need to get into convergence intervals for Newton.

. No global analysis and easy to use industrial implementation.
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Finding all evs in a region R of C

For the general case F (λ)x = 0 and most iterative methods it is
an open problem to guarantee that we find all eigenvalues in a
given set R ⊂ C.
. We can use Bendixon’s theorem or Gersgorin type results to

analyze the number of eigenvalues.
. The computation can in principle be done with any solver and

many start points.
. We could use the sign function method (not for large

problems) or the Cauchy integral theorem (Beyn 2009).
. Homotopy or path following seem to be the only option.
. None of these methods is really satisfactory.
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Homotopy

. Replace F (λ) by P(λ) + g(t)Q(λ), where the problem
P(λ)x = 0 is ’easy’ and where g is a monotonically increasing
function of t with g(0) = 0, g(1) = 1.

. Compute all the eigenvalues λi(0) of P in the given set R and
possible the associated ev.

. Large potential for parallelism.

. Follow the eigenvalue curves λi(t).

. Determine eigenvalues that leave R.

. Determine eigenvalues that come into R from outside.

. Determine bifurcation points.

. Use step size control to guarantee that no ev. is missed.

. Use Newton method for fully nonlinear problem.
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Difficulties

. If the ’hard part’ is large, then evs. move a lot.

. Small homotopy steps may be needed to track ev’s of
nonlinear problem.

. Many factorizations may be needed.

. Need to use out-of-core sparse solvers.

. Need to get into convergence intervals for Newton.

. Need to update search directions in a clever way to make
stepsizes small.
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Application to acoustic problem

Consider nonlinear eigenvalue problem P(λ)x = 0, where

P(λ) := λ2
[

Ms 0
0 Mf

]
+ λ

[
Ds DT

as
Das Df

]
+

[
Ks(λ) 0

0 Kf

]
,

is complex symmetric and has dimension up to 10,000,000.
Goal: Compute all eigenvalues in a given region R of C and
associated eigenvectors.
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Model/modal reduction
. After desired ev’s and deflating subspaces U = [u1, . . . ,uk ]

have been computed, the projected system

UT M(α)Uz̈ + UT D(α)Uż + UT K (α)Uz = UT f

is formed and optimization is done on this system.
. The original decoupled projection (fluid and structure

separately) does not work.
. We really need nonlinear model reduction (open problem).
. We need to use the fact that only a small part of the system is

changed in every optimization step.
. We need to integrate ev computation, gradient computation,

discretization.
. An adaptive multilevel approach would be great (Reduced

order modeling)
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Projection methods, linear evps.

. For large sparse linear evps Ax = λx , iterative projection
methods like the Lanczos, Arnoldi, rational Krylov or
Jacobi–Davidson method are well established.

. Basic idea: Construction of a search space (typically a Krylov
subspace) followed by projection into this subspace.

. This gives a small dense problem, handled by a dense solver
and the eigenvalues of the projected problem are used as
approximations.

. Main features: Matrix factorizations are avoided as much as
possible (except in the context of preconditioning), and the
generation of the search space is usually done via an iterative
procedure that is based on matrix vector products that can be
cheaply obtained.
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Basic types

Two basic types:
. Methods which expand the subspaces independently of the

eigenpair of the projected problem and which use Krylov
subspaces of A or (A− σI)−1 for some shift σ. These methods
include the Arnoldi, Lanczos or rational Krylov method.

. Methods that aim at a particular eigenpair and choose the
expansion q such that it has a high approximation potential for
a desired eigenvalue/eigenvector or invariant subspace. An
example for this approach is the Jacobi–Davidson method.
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Krylov subspace methods
. For the Arnoldi and other Krylov subspace methods, the

search space is a Krylov space

Kk (A, v1) = span{v1,Av1,A2v1, . . . ,Ak−1v1},

where v1 is an appropriately chosen initial vector.
. Arnoldi produces an orthogonal basis Vk of Kk (A, v1) such

that the projected matrix Hk is upper Hessenberg and satisfies

AVk = VkHk + fkeT
k ,

where ek ∈ Rk is the k -th unit vector and fk is orthogonal to
the columns of Vk , i.e. V H

k fk = 0.
. The orthogonality of Vk implies that V H

k AVk = Hk is the
orthogonal projection of A to Kk (A, v1).

Nonlinear EVPs 175 / 203



Ritz pairs

. If (y , θ) is an eigenpair of the projected problem, and x = Vky
is the corresponding approximation to an eigenvector of
Ax = λx (which is called a Ritz vector corresponding to the
Ritz value θ), then the residual satisfies

r := Ax−θx = AVky−θVky = VkHky−θVky +fkeH
k y = (eH

k y)fk .

. Hence, one obtains an error indicator ‖r‖ = |eT
k y | · ‖fk‖ for the

eigenpair approximation (x , θ) without actually computing the
Ritz vector x .

. If A is Hermitian then this is even an error bound.
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Evaluation

. The Arnoldi method together with its variants, such as
shift-and-invert and implicit restart, is today a standard solver.

. It is implemented in the package ARPACK and the MATLAB
command eigs.

. It typically converges to the extreme eigenvalues first.

. If one is interested in eigenvalues in the interior of the
spectrum, or in eigenvalues close to a given focal point τ , then
one can apply the method in a shift-and-invert fashion, i.e. to
the matrix (A− τ I)−1 or an approximation of it.

. In this case one has to determine a factorization of A− τ I,
which, however, may be prohibitive for very large problems.

. One may use a preconditioned iterative solver here.
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Jacobi-Davidson method

An alternative is the Jacobi–Davidson method.
. Let (x , θ) be an approximation to an eigenpair obtained by a

projection method with subspace V .
. We assume that ‖x‖ = 1, θ = xHAx and r := Ax − θx ⊥ x .
. Then the most desirable orthogonal correction z solves the

equation
A(x + z) = λ(x + z), z ⊥ x .

. As z ⊥ x , the operator A can be restricted to the subspace
orthogonal to x yielding Ã := (I − xxH)A(I − xxH), and from
θ = xHAx it follows that

A = Ã + AxxH + xxHA− θxxH .
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Correction equation
. Hence, (Ã− λI)z = −r + (λ− θ − xHAz)x .
. Since both the left hand side and r are orthogonal to x , it

follows that the factor λ− θ− xHAz must vanish, and therefore
the correction z has to satisfy (Ã− λI)z = −r .

. Since λ is unknown, it is replaced by a Ritz approximation θ,
and one ends up with the correction equation

(I − xxH)(A− θI)(I − xxH)z = −r .

. The expanded space [V , z] for the Jacobi–Davidson method
contains u = (A− θI)−1x , obtained by one step of inverse
iteration.

. One can expect similar approximation properties, i.e.
quadratic or even cubic convergence, if the problem is
Hermitian.

. The Jacobi–Davidson method is aiming at a particular
eigenvalue (close to the shift θ).
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Comparison Arnoldi, JD

. Both, the shift-and-invert Arnoldi method and the
Jacobi-Davidson method have to solve a large linear system.

. In the Arnoldi method this system in general needs to be
solved very accurately to get fast convergence.

. In the Jacobi–Davidson method it suffices to solve this system
approximately to maintain fast convergence.

. Typically only a small number of steps of a preconditioned
iterative method are sufficient to obtain a good expansion z for
the search space V .

. Implementations of JD in FORTRAN and MATLAB can be
downloaded from
http://www.math.ruu.nl/people/sleijpen.
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Struct. proj. methods

. Structure preserving linearizations plus structure preserving
Arnoldi methods for linear problems are available for many
structures. (Even, palindromic, . . . ).

. The use of structure saves computing time and one gets more
accurate results.

. One has to design specific spaces and specific projections.
Apel/M./Watkins 2002, M./Schröder/Simoncini 2009.

. Many open problems.
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Proj. methods for nonl. evps
Consider F (λ)x = 0.
. Expand the search space by directions that has a high

approximation potential for the next desired eigenvector.
. Assume that V is an orth. basis of current search space.
. Let (θ, y) be a solution of the proj. problem V HF (λ)Vy = 0,

and let x = Vy be the Ritz vector.
. Two candidates for expanding V : v̂ = x − F (σ)−1F (θ)x

motivated by residual inverse iteration, and ṽ = F (θ)−1F ′(θ)x
corresponding to inverse iteration.

. Expanding search space V by v̂ results in Arnoldi type
methods.

. Expanding it by ṽ requires the solution of a large linear system
in every iteration step. This can be avoided by a
Jacobi–Davidson approach .
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Nonlinear Arnoldi
. We consider the expansion of V by v̂ = x − F (σ)−1F (θ)x ,

where σ is a fixed shift (not too far away from focal point).
. The new search direction is orthonormalized against the

previous ansatz vectors.
. Since the Ritz vector x is contained in the span of V , one may

choose the new direction v = F (σ)−1F (θ)x as well.
. For the linear problem F (λ) = A0 + λA1 this is exactly the

Cayley transformation with pole σ and zero θ

(A0 + σA1)−1(A0 + θA1) = I + (θ − σ)(A0 + σA1)−1A1

. Krylov spaces are shift-invariant, the resulting projection
method expanding V by v the shift-and-invert Arnoldi method.

. If it is too expensive to solve the linear system F (σ)v = F (θ)x
for v , one may choose v = MF (θ)x with M ≈ F (σ)−1.
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Nonlinear Arnoldi, Ruhe 1998
1: start with an initial shift σ and an initial basis V , V HV = I;
2: determine a preconditioner M ≈ F (σ)−1,
3: for m = 1,2, . . . , number of wanted eigenvalues do
4: comp. ev µ and evec y of FV (µ)y := V HF (µ)Vy = 0.
5: determine Ritz vector u = Vy and residual r = F (µ)u
6: if ‖r‖/‖u‖ < ε then
7: accept approximate eigenpair λm = µ, xm = u,
8: if m == number of desired eigenvalues then STOP end if
9: choose new shift σ and precond. M ≈ F (σ)−1 if indicated

10: restart if necessary
11: choose approximations µ and u
12: determine residual r = F (µ)u
13: end if
14: v = Mr
15: v = v − VV Hv ,ṽ = v/‖v‖, V = [V , ṽ ]
16: reorthogonalize if necessary
17: end for
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Discussion

. In Step 1 any pre-information such as known approximate
eigenvectors should be used.

. If no information on eigenvectors is at hand, and one is
interested in evs near τ ∈ D, choose an initial vector at
random, execute a few Arnoldi steps for the linear evp
F (τ)u = θu or F (τ)u = θF ′(τ)u, and choose V by
orthogonalizing evecs. Starting with a random vector without
this preprocessing does not lead to convergence.

. The preconditioner in Step 2 should be chosen on the basis of
the underlying problem. If this is not available, then use full or
incomplete sparse LU decompositions of F (σ).

. Update the preconditioner if the convergence measured by
the quotient of the last two residual norms before convergence
has become too slow.
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Nonlinear Jacobi–Davidson
. Suppose that the columns of V ⊂ Cn form an orthonormal

basis of the current search space, and let (x , θ) be a Ritz pair
i.e. V HF (θ)Vy = 0, x = Vy .

. Consider the correction equation(
I − pxH

xHp

)
F (θ)

(
I − xxH

xHx

)
z = −r , z ⊥ x ,

where p := F ′(θ)x and r := F (θ)x .
. Rewrite this as F (θ)z − αp = −r , where α has to be chosen

such that z ⊥ x .
. Solving for z we obtain

z = −x + αF (θ)−1p = −x + αF (θ)−1F ′(θ)x ,

and x = Vy yields that z̃ := F (θ)−1F ′(θ)x ∈ span[V , z].
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Discussion
. The new search space span[V , z] contains the vector obtained

by one step of inverse iteration with shift θ and initial vector x
. We expect quadratic or even cubic convergence, if the

correction equation is solved exactly.
. Usually a few steps of a Krylov solver with an appropriate

preconditioner suffice to obtain a good expansion direction.
. If a Krylov solver is used and the initial approximation is

orthogonal to x then all iterates are orthogonal to x as well.
. The operator F (θ) is restricted to map the subspace x⊥ to

(F ′(θ)x)⊥.
. If K ≈ F (θ) is a preconditioner of F (θ) then a preconditioner

for an iterative solver is

K̃ := (I − pxH

xHp
)K (I − xxH

xHx
).
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Template
1: start with an initial shift σ and an initial basis V , V HV = I;
2: determine a preconditioner M ≈ F(σ)−1,
3: for m = 1,2, . . . , number of wanted eigenvalues do
4: compute ev µ and evec y of FV (µ)y := V HF(µ)Vy = 0.
5: determine Ritz vector u = Vy and residual r = F(µ)u
6: if ‖r‖/‖u‖ < ε then
7: accept approximate eigenpair λm = µ, xm = u,
8: if m == number of desired evs then STOP end if
9: choose new shift σ and a precond. M ≈ F(σ)−1

10: restart if necessary
11: choose approx. µ and u
12: determine residual r = F(µ)u
13: end if
14: Find an appr. solution of (I − F ′(µ)uuH

uHF ′(µ)u )F (µ)(I − uuH

uHu )t = −r

15: v = v − VV Hv ,ṽ = v/‖v‖, V = [V , ṽ ]
16: reorthogonalize if necessary
17: end for
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Idea of Rat. Krylov
. Linearize the nonlinear family F (λ) by Lagrange interpolation

between two points µ and σ.

F (λ) =
λ− µ
σ − µ

F (σ) +
λ− σ
µ− σ

F (µ) + higher order terms.

. Keep σ fixed for several steps, iterate on µ, neglect the
remainder in the Lagrange interpolation, and multiply by
F (σ)−1 from the left:

F (σ)−1F (λj−1)w = θw with θ =
λj − λj−1

λj − σ
,

. This predicts a singularity at

λj = λj−1 +
θ

1− θ
(λj−1 − σ).

. For large and sparse matrices combine with linear Arnoldi
process.
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Rat. Krylov I
. After j steps, approx. evs λ1, . . . , λj , orthon. Vj = [v1, . . . , vj ], and

upper Hessenb. Hj,j−1 ∈ Cj,j−1 are generated, with

F (σ)−1F (λj−1)Vj−1 = VjHj,j−1

. Updating the matrix Hj,j−1 according to the linear theory yields

H̃j+1,j =

[
Hj,j−1 kj

0 ‖r⊥‖

]
,

where kj = V H
j rj , rj = F (λj)vj , and r⊥ = rj − VjV H

j vj .

. Use Lagrangian interpolation to satisfy next Arnoldi relation via

G(λj) ≈
λj − σ
λj−1 − σ

G(λj−1)−
λj − λj−1

λj−1 − σ
I =

1
1− θ

G(λj−1)− θ

1− θ
I,

where G(λ) := F (σ)−1F (λ), and updates H according to

Hj+1,j =

[ 1
1−θHj,j−1 − θ

1−θ Ij,j−1 kj
0 ‖r⊥‖

]
.
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Discussion

. This first version of the rational Krylov method is not very
efficient.

. Ruhe 2000 suggested to modify λ and H in an inner iteration
until the residual r = F (σ)−1F (λ)Vjs is enforced to be
orthogonal to Vj

. Expand the search space only after the inner iteration has
converged
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Rational Krylov algorithm
1: V = [v1] with ‖v1‖ = 1, init. λ, σ ; j = 1, hj = 0j ; s = ej ; x = vj ;
2: compute r = F (σ)−1F (λ)x and kj = V H

j r
3: while ‖kj‖ >ResTol do
4: orthogonalize r = r − V H

j kj

5: set hj = hj + kjs−1
j

6: θ = min eig Hj,j with corresponding eigenvector s
7: x = Vjs
8: update λ = λ+ θ

1−θ (λ− σ)

9: update Hj,j = 1
1−θHj,j − 1

1−θ I
10: compute r = F (σ)−1F (λ)x and kj = V H

j r
11: end while
12: compute hj+1,j = ‖r‖
13: if |hj+1,jsj | >EigTol then
14: vj+1 = r/hj+1,j ; j = j + 1; GOTO 2:
15: end if
16: Accept eigenvalue λi = λ and eigenvector xi = x
17: If more eigenvalues wanted, choose next θ and s, and GOTO 8:
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Variation of Rat. Krylov

1: start with initial vector V = [v1] with ‖v1‖ = 1, initial λ and σ
2: for j = 1,2, . . . until convergence do
3: solve projected eigenproblem V HF (σ)−1F (λ)Vs = 0 for

(λ, s)
by inner iteration

4: compute Ritz vector x = Vs and residual r = F (σ)−1F (λ)x
5: orthogonalize r = r − VV Hr
6: expand searchspace V = [V , r/‖r‖]
7: end for
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Vibrations of a fluid–solid structure
. Free vibrations of a tube bundle immersed in a slightly

compressible fluid.
. Discretizing by finite elements one obtains

F (λ)x := −Kx + λMx +
k∑

j=1

λ

σj − λ
Cjx = 0,

where K , M, and Cj are symmetric matrices, K and Cj are
positive semidefinite, M is positive definite, and
0 =: σ0 < σ1 < · · · < σk < σk+1 :=∞ are positive.

. In each of the intervals (σj , σj+1), j = 0, . . . , k .

. This problem satisfies the min-max characterization.

. Consider n = 22654 with one pole σ1 = 1 which has 11
eigenvalues λ1 ≤ · · · ≤ λ11 in the interval J1 = (0,1) and a
large number of eigenvalues greater than 1, 10 of which are
contained in the interval (1,4).

Nonlinear EVPs 194 / 203



Results

Method Iter. LU fact. CPU [s] nlin.sol. [s]
Arnoldi 34 2 14.93 0.13
Jacobi–Davidson 37 3 112.84 0.15
rational Krylov 40 2 70.80 0.22
interval (1,4)
Arnoldi 36 2 17.35 0.17
Jacobi–Davidson 37 5 125.87 0.23
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Damped vibrations of a structure

As second example we consider the free vibrations of a finite
element model of dimension 10704 for a solid using a
viscoelastic constitutive relation to describe the behavior of the
material.

Method Iter. LU fact. CPU [s] nlin.sol. [s]
Arnoldi 144 2 707.0 469.9
Arnoldi, restarted 139 5 199.6 25.0
Jac.–Davids. 111 9 1050.5 161.2
Jac.–Davids, rest. 109 12 914.4 18.9
rational Krylov 147 3 1107.1 465.3
rational Krylov, rest. 147 4 647.8 28.5
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Conclusions

. Industrial applications lead to challenging mathematical
problems.

. Large scale nonlinear PDE eigenvalue problems within
optimization loop.

. The mathematical theory and algorithms are still far from the
needs in reality.

. Commercially available codes are not satisfactory.

. Industry is not interested in and does not pay for the analysis,
convergence proofs, etc.

. Structure preserving linearization techniques have been
derived.

. Homotopy and Newton like method have been developed but
the understanding is open.
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Thank you very much
for your attention.
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