Hyponormality and Aluthge transformation of indefinite type

<u>Rute Lemos</u>¹, Natália Bebiano², João da Providência² and Graça Soares³

¹University of Aveiro, Portugal ²University of Coimbra, Portugal ³University of Trás-os-Montes e Alto Douro, Vila Real, Portugal

Abstract

Let \mathcal{H} be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and T an operator defined on \mathcal{H} . The Aluthge transformation of T was introduced in 1990 in a paper concerning p-hyponormal operators [1] and it has been extensively studied since then. Let J be a selfadjoint involution on \mathcal{H} and let us consider \mathcal{H} with a Krein space structure where the indefinite inner product is given by $[x, y] = \langle Jx, y \rangle$ for all $x, y \in \mathcal{H}$. We present an indefinite complete form of Furuta inequality inspired by [5]. We introduce the notion of J-generalized Aluthge transformation for operators T with J-polar decomposition $T = U|T|_J$, where U is Junitary and $|T|_J$ is the J-modulus of T, and study some of its properties concerning p-hyponormal operators on Krein spaces. Some indefinite versions of well known results [1], [2], [3], [4] are obtained.

Keywords

Generalized Aluthge transformation, *J*-polar decomposition, *J*-contraction, *J*-hyponormal operator, Indefinite complete form of Furuta inequality.

References

- Aluthge, A. (1990). On p-hyponormal operators for 0 Equations Operator Theory 13, 307–315.
- [2] Furuta, T. and M. Yanagida (1997). Further extensions of Aluthge transformation on p-hyponormal operators. Integral Equations Operator Theory 29, 122–125.
- [3] Huruya, T. (1997). A note on p-hyponormal operators. Proc. Amer. Math. Soc. 125, 3617–3624.
- [4] Yoshino, T. (1997). The p-hyponormality of the Aluthge transformation. Interdiscip. Inform. Sci. 3, 91–93.
- [5] Yuan, J. and Z. Gao (2008). Complete form of Furuta inequality. Proc. Amer. Math. Soc. 136, 2859–2867.