Why are those exponents so critical?

Charles R. Johnson

College of William and Mary, Williamsburg, Virginia, USA

Abstract

Let C be a class of matrices in which a continuous powering $A^{(t)}$ is defined. By a "critical exponent" for C we mean the smallest real number e such that for all t > e and all A in C, $A^{(t)}$ lies in C. Of course, many classes are not closed under continuous exponentiation but may still have a critical exponent; some classes may not have a critical exponent, and it may well be possible to know that a class has a critical exponent, without knowing the exact value. We survey both historical and recent results about critical exponents, including ones for such classes as doubly nonnegative, totally nonnegative, M-matrices, inverse M-matrices, etc. and such powering as conventional, and Hadamard, etc.