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Introduction

Let {X }, (n=0) be a finite irreducible (ergodic), discrete time
Markov chain (MC).

Let S ={1, 2,..., m} be its state space.

Let p; = P[X . =j|X_ =1i]be the transition probability

from state / to state .

Let P = [p,.j] be the transition matrix of the MC.

P stochastic = E;pif -1, iES.

Let {p{”} = {P[X, = j ]} be the probability distribution
at the n-th trial.



Limiting & stationary distrns

When the MC is regular (finite, aperiodic & irreducible)
a limiting distribution exists, that does not depend

on the initial distribution and that the limiting distribution
is the stationary distribution. ie. {X } has a unique

stationary distribution {x },j €S and lim p{" =7 .

When the MC is finite, irreducible and periodic
a limiting distribution does not exist. However
there is a unique stationary distribution.



Stationary distributions

Irreducible or ergodic MCs {X } have a unique stationary
distribution {x },j €S.

The stationary probabities are given as the solution
of the stationary equations:

7=y wp, (JES)with Y 7 =1

|=

The "stationary probability vector" is &" = (n TCyeaes T ).

17



Primer on g-inverses of /I - P

A 'one condition' g-inverse or an ‘equation solving' g- inverse
of a matrix A is any matrix A~ such that AA"A = A

Let P be the transition matrix of a finite irreducible MC with
stationary probability vector #”. Let t and u be any vectors.

|-P +tu” is non-singular < z't=0and u'e = 0.

#'t=0andu’e=0= [[-P+tu']"is a g-inverse of | - P.
(Hunter, 1982)



Use of g-inverses

A necessary and sufficient condition for AXB=C
to have a solution is that AA"CB B = C.

If this consistency condition is satisfied the general solution
iIsgivenby X =ACB +W -A"AWBBE",
where W is an arbitrary matrix. (Rao,1966)

AX =C has asolution X = A C+(I-A AW,
where W is arbitrary, provided AAC = C.




Special g-inverses of I - P

If G is any g-inverse of / - P then there exists vectors
f,g,tand u with 7't =0 and u’e = 0 such that
G=[I-P+tu"]" +ef +gn’.

Z=[I-P+I]", (1= ex’) "fundamental matrix" of
irreducible (ergodic) Markov chains. (Kemeny & Snell, 1960)
(I - P)" = A*=Z —T1, “group inverse” of [ - P. (Meyer, 1975)

If G is any generalized inverse of [ - P,
(I - P)G(I - P) is invariant and = A”.
(Meyer, 1975), (Hunter, 1982)




First passage times in MCs

Let 7, be the first passage time r.v. from state / to state J,
i.e.Tij = min{n =1such that X = j given that X =/},

T is the ™first return to state /".

The irreducibility of the MC ensures that the TU are all

proper random variables. Under the finite state space
restriction, all the moments of T,.j are finite.

Let m® be the k-th moment of the first passage time

from state / to state .
ie.m? =E[T | X, =i] forall(i,j))ES x S.



Mean first passage times

Let m;” = m_, the mean first passage time from

state / to state j, (/,j)ES x S.
For an irreducible finite MC with transition matrix P,

let M = [my] be the matrix of expected first passage

times from state / to state .

M satisfies the matrix equation
(I-PM = E-PM,
where E = ee’ =[1], M, =[6.m.]=(IT,)"

vy

1
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Mean first passage times

If G is any g-inverse of | — P, then
M = [GII-E(GII), +/ -G+ EG,]D. (Hunter, 1982)
Under any of the following three equivalent conditions:
(i) Ge = ge, g a constant,
(i) GE -E(GII),D =0,
(i) GII-E(GII), =0,
M=[I-G+EG,]D. (Hunter, 2008)
Special cases:
G = Z, Kemeny and Snell's fundamental matrix (g = 1)
G = A" =Z-T1, Meyer’s group inverse of | - P, (g = 0)



Mean first passage times

If G =] 9,-,-] IS any generalized inverse of | — P,

then m =(lg,-g,+96,1/7)+(g, -g,)forallij.

Further, when Ge = ge,
=[g9, -9, +96,]/m foralli,j.

“i ~ a’;—aj S
= , =],
JU . JU .
Thusml.j=< / /

1 .
— i=J.
T
J

Using Z (Kemeny & Snell, 1960). Using A* (Meyer, 1975)




Kemeny’s constant

Key Result :

Mnm = Ke,
Lm/jnj = K, "Kemeny's constant’ for all i €S.

One of the simplest proofs is based upon Z:
Mr=[l-Z+EZ, Dr

=[I-Z+EZ e

=e-Ze+ee'Z e =Ke,
where K = e'Z e = tr(Z).



Initial appearance - 1960

THE UNIVERSITY SERIES IN
UNDERGRADUATE MATHEMATICS




Kemeny & Snell - Initial result

Suc. 4 REGULAR MARKOV CHAINS 81

4.4.10 THEOREM. Lelc= Z zii. Then MaT =cé.

PROOF.

MoT = (I—Z+EZqag) Dot
I—Z 4+ EZg)t

=
= £§(nZqgt) = €.

In terms of our notation: ¢ = tr(Z), o' =x,n=€',E=e so that
Mz = (tr(Z))e.

(Kemeny & Snell, “Finite Markov Chains”,1960)



Kemeny’s constant - Alternative

Define k = Mz, where k' = (K, ,K,,....,K ).

Since (I-P)M = E - PM _,
(I-P)k=(I-P)Mn =En-PM,n =ee’'n -Pe=e-e=0.
i.e. Pk =k, or "pK =K

j=170 i

The irreducubility of the MC implies that k is the right
eigenvector of P corresponding to the eigenvalue A =1
=k=Ke. ieK =K foralli =12, .., m

m

_m; = K, "Kemeny's constant' for all i €S.

leK. =
I /=



Clarification of Kemeny’s K

m_ is typically defined as the mean time for the MC

starting in state / to return to state /. It is well known that
m. =1/, and thus m . =1

Consequently "Kemeny's constant"

m

K = T max. =ma+> mxa =1+ mumx.
j=1"" i i~ j=i U J=i U

Some authors (in particular, Grinstead and Snell, 2006) define,
by convention, that m. = 0 so that the expression for the mean

first passage times as m, = (zjj -z, ) /n:j holds for all J, /.

We will stay with the expression as defined above for K, bearing
In mind that in some books and papers K is replaced by K - 1.



Grinstead & Snell - 2006 - update




Grinstead & Snell - update

19 Show that, for an ergodic Markov chain (see Theorem 11.16),

E :mijwy E :ZJJ l=K
J

By convention m;; = 0.

The second expression above shows that the number K is independent of
t. The number K is called Kemeny’s constant. A prize was offered to the
first person to give an intuitively plausible reason for the above sum to be
independent of i. (See also Exercise 24.)



Grinstead & Snell - update

24 In the course of a walk with Snell along Minnehaha Avenue in Minneapolis
in the fall of 1983, Peter Doyle?® suggested the following explanation for the
constancy of Kemeny’s constant (see Exercise 19). Choose a target state
according to the fixed vector w. Start from state ¢ and wait until the time T'
that the target state occurs for the first time. Let K; be the expected value
of T'. Observe that

Ki +w; - 1/w; IZPinj +1,
J

and hence
K; =) P;K;.
J

By the maximum principle, K; is a constant. Should Peter have been given
the prize?



Peter Doyle — 2009 - update

The Kemeny constant of a Markov chain

Peter Doyle
Version 1.0 dated 14 September 2009
GNU FDL*
Miw - Z P,LJM]w
J

But now by the familiar maximum principle, any function f; satisfying

Z P’ f; = fi

must be constant: Choose ¢ to maximize f;, and observe that the maximum
must be attained also for any 7 where Pij > (0; push the max around until it
is attained everywhere. So M;,, doesn’t depend on i.

Note. The application of the maximum principle we’ve made here shows
that the only column eigenvectors having eigenvalue 1 for the matrix P are
the constant vectors—a fact that was stated not quite explicitly above.

This formula provides a computational verification that Kemeny's con-
stant is constant, but doesn’t explain why it is constant. Kemeny felt this
keenly: A prize was offered for a more ‘conceptual’ proof. and awarded—

rightly or wrongly—on the basis of the maximum principle argument outlined
above.



Expressions using g-inverses

If G = [9,]Is any g-inverse of I - P, then
K=1+1tr(G) - tr(GI) =1+ E (9,-9,7))

j=1
When Ge = ge,
K=1-g+tr(G)=1-g+ Lgﬂ..

m

In particular, K = tr(Z) = Z.

j=1"1
and K =1+ tr(A%).
"Classical result" (Hunter, 2000).
"Random target lemma" (with Z) (Lovasz &Winkler,1998).
Book "Reversible MCs & RWs" (Aldous & Fill, 1999).



Expressions using eigenvalues

P irreducible =
The eigenvalues of P,{A.} (i =12,...,m)
are suchthat A, =1, with [A |<1and A =1 (/i =2,...,m).

= The eigenvalues of Z=[/- P + ex’ ] 'are

1
A(Z)=1 (i =1), i=2,...,m).
(@)=1G=1 15 )
Thus K=tr(Z2)=
. no 1
= 2D =1 Y

(Levene & Loizou, 2002), (Hunter, 2006), (Doyle, 2009)



Bounds on K

K=1+ Em 1 and P is irreducible.

=2

Hence A, =1, with [A |<s1and A, =1 (i =2,...,m).
If any eigenvalue appears on the unit circle | A| =1 must appear
as a root of unity and be associated with a periodic chain (whose
periodicity cannot exceed m).
Any complex root A = a + bi must be associated with its complex
conjugate A = a - bi, with a® + b> < 1.
For this pair of conjugate roots

1,1 2-(A+X_) __2-2a _ 2-2a
-2 1-2 (1-2)(1-1) 1-(A+A)+ AL 1-2a+a*+b?

>1.




Bounds on K

. . 1
For conjugate pair of roots 1 + ——==1. For any real roots,

1-A 1-4

1 > % The only possible root at A = -1 occurs

1<Ai<1=

with periodic chain with even period.
Thus taking the real roots individually and complex roots in pairs

K=1+E',77 1 Z1+m—1=m+1-
I=21—)\.I. 2 2

Hunter (2006) based on Styan (1964) when all A, are real.
If the MC is reversible (all the A real) and regular (aperiodic)

m -1 m 1 m -1
2

then <) < . (Levene & Loizou, 2002).
2 1A 1-A,



Bounds on K

Suppose the the MC is irreducible & reversible so that

. m A
1=A,> A,z...2A_>-1.Note K=1+Ei=2_1_1)L, =m+Ei=21_I)L_

From Palacois & Remon (2010), the method of Lagrange multipliers

applied to the function f(x,,...,x )= 2721 i subject to the
21— x.

condition 1+ X, ...+ X = 0 on the domain 1 > X,z...2X > -1
1

= minimum of f(x,,x,,...,x ) attained atx, =..= x = Pt
2
o (m=1 3 1 _M=1 " palocois & Remon, 2010).
m =21-A 1-4,

- an improvement on the earlier bounds of Levene & Loizoiu).



Alternative representation of K

#

K =tr(A")- —L+1, where A" is (m-1)x (m-1) principal

JU .
J

submatrix of A obtained by deleting its j — th row
and column. (Catral, Kirkland, Neumann, Sze, 2010)

The proof is based upon expressing A* = [a,?f] interms of A" and &’
Without loss of generality, take j=m.Use m, = a; - a;

and the result (Meyer, 1973) that if B is the leading (m-1)x (m-1)
principal submatrix of A%, then B= A"+ pW - A"'W - WA,

T A-1 T T T
where f=u A'e, W=eu andx =(u ,7 ).



Stationarity in Markov chains

For all irreducible MCs (including periodic chains),
if for some k =0, pi =P[X, = j] =, forallj €S,

then pi” =P[X = j] =, foralln=k and all j ES.

How many trials do we need to take so that
PIX,=j]=m, forall j&S?



Mixing times in Markov chains

Let Y be a RV whose probability distribution is the stationary
distribution {n:j}.

The MC {X }, achieves "mixing", attime T = k, when X, =Y
for the smallest such k = 1.

T is the "time to mixing" in a Markov chain.
Thus, we first sample from the stationary distribution {nj} to

determine a value of the random variable Y, say Y = .
Now observe the MC, starting at a given state /. We achieve
"mixing" at time T =n when X = j forthe firstsuchn = 1.



Expected time to mixing

State space

Sampled state—

Starting state j —>

Mixing occurs

|

< T, “mixing time” startinginj ——»

o1 2 3 4 5 6 7 8 9 10 11 12 Trial number



Expected time to mixing ina MC

The finite state space & irreducibility of the X _

= T is finite (a.s), with finite moments.
Let 7,,. be the "expected time to mixing", starting at state /,

(assuming that mixing cannot occur at the first trial).

Conditional upon X, =/,
E[T]=E, (E[T|Y])= E;E[T 1Y = JIP[Y = J]
= Ej=1E[Tif | Xo =1l =), My,

Jj=I
m

. . m
ie.t, =E[T|X, =i]= M=) M = Ty, = K.

(Hunter, 20006)



Expected mixing times

Expected time to mixing, starting in any state, is constant
7, =K.
If G = [9,] s any g-inverse of I - P, then

T, =1+1tr(G)-tr(GII) =1+ EH(Qﬂ -9g,.7;)
When Ge = ge,
7, =1-g+1tr(G)=1-g+ 195

T, =tr(2)=Y  z

j=1"Jf

and T, =1+ tr(A*).



Expected mixing times

We have assumed that the MC {X }, achieves "mixing’,
attime T = k, when X, =Y for the smallest such k = 1.

If we assume that mixing might be possible at k = 0 when
the "mixing state", sampled from {nj}, and the "starting state" j

are the same (say state /) we would have “mixing” occurring at
time T =0, in which case the expected time to mixing would

be mx. =K-1 sincemx. =1.
J=i U i

(In our assumptions, mixing cannot occur intially and if the mixing
state and the starting state are the same, mixing will not occur
until a return to state / has occured after atime T, (=1))



Random surfer

m

Note that K = 211 ,E” mo=y nM where M. = Tm.

i=1 j=1 "7

M. can represent the mean first passage time from state i when
the destination state is unknown.

K = EZ@MI can be interpreted as the mean first passage time

from an unknown starting state to an unknown destination state.
Imagine a random surfer who is "lost" and doesnt know the state
he is at and where he is heading.

K can be intrepeted as the mean number of links the random surfer
follows before reaching his destination. Thus the random surfer

Is not "lost" anymore, he just has to follow K random links and he
can expect to arrive at his final destination.(Levene & Loizou, 2002)



Example — Two state MCs

Poy Py b 1-b

(O<a<1 0=<bs<1). Letd=1-a-b.

MC irreducible < -1=<d <1.

MC has a unique stationary probability vector

nT=(n1,n2)=/ b _a \_( b _a \
la+b’a+b) |1-d"1-4d]

-1<d <1< MCis regular and the stationary distribution
is the limiting distribution of the MC.

d =-1 < MC s irreducible, periodic, period 2.

Let P Py Py, =[1—a a




Example — Two state MCs

1 1
=1+ .
a+b 1-d
d = 1< Periodic, period 2, MC witha=1 b=1.
< 7, =1.5 (minimum value of 7, ).

T, =1+

d =0 < Independent trials < 1, = 2.
d —1(both a — 0 and b — 0) = arbitrarily large 7, .

For all two state MCs: 1.5 < T, <® 201

10 A

-1.000 -0.500 0.000 0.500 1.000
d




Example — Two state MCs

+

=1

Plot of

a+b




Example — Three state MCs

| 1—P2—P3 P, Ps
P=|:p,'j:|= q1 1_q1_q3 q3
£ ’ 1—I’1—I’2

Six Constrai-ned parameters with

O<p,+p,=<1,0<q,+q,=<1andO<r. +r, <1.

Let A, = q,r +qy, +qy,,
A, =P, + 1Py +1,P,,

A, =Pp,q; + P59, + Py,
A = A1+A2+A3.




Example — Three state MCs

MC is irreducible
(and hence a stationary distribution exists)
< A >0,A,>0,A,>0.

Stationary distribution given by

1772773

1
(7, n3)=X(A ALAL).



Example — Three state MCs

Let 7, =P, + 1+ 1, Ty =P, +q,+ 05Ty =Gy + 1, + 1,
Tys = Gy + P, + Py, Ty =1, +Q+ 0y, Ty, =1L+ P, + s,
Let 7=p,+p,+Q,+q, +I +17,

= T=T,+T3 =Ty TTy =Ty T 7Ty,

| A/A1 7712/A2 T13/A3 |
M = 7721/A1 A/Az 7:23/A3

| T31/A1 T32/A2 A/A3




Example — Three state MCs

Kemeny's constant: K =1 + L T,
A

For all three-state irreducible MCs, T, 2.

\Y

7,, = 2 achieved in "the minimal period 3" case

0 1 0 |
whenp,=q,=r,i.e.whenP=| 0 0 1 |.
1 0 O_




Example — Three state MCs

"Period-2 case": Transitions between {1,3} and {2}

O 1 0
P=|q, 0 q, , (g, +q,=1)=1,=25
0O 1 0 |
"Constant movement" case:
0 p, P,
P=q 0 q |.(p,+p,=0,+q,=r,+r,="1)
nor, O
T, =1+ 3 =2=<7,, 2.9
3- q,r, = IP; — P4,

Period-3 case T, = 2. Period-2 case T, = 2.5



Example — Three state MCs

"Cyclic drift" case:

P =

1-a
0
C

a
1-b
0

0
b

1-¢ _

, =TM=1+

a+b+c
bc+ca+ab

a+b+c—3=1,—>2,a=b=c=¢=>71,=1+——>xase¢—0

&

"Constant probability state selection" case:

P =

1-2 a2 a/2
b/2 1-b b/2
c/2 c¢/2 1-c

4

=17, =1+

1

4(a+b+c)

3(bc + ca+ ab)

a=b=C=€=>7:M=1+—=> 2—<1:M<oo

3¢



Summary of general results

m+1

Periodic, period-m chain t,, =

Independent trials with m possible outcomes: 7, = m.

For all irreducible m - state MCs: m+1

< oo
_‘L’M< .

T,, could be interpreted as the expected time to "stationarity
(Hunter, 20006)



Perturbation results

Consider perturbing P = [p,.j] (where P associated with an ergodic,

m

m-state MC, to P =[p,]=P +E where E=[¢,], (3" &, =0)

j=1"i
_T J— J— J—
Let 7" = (7,,7,,....7 ) and & = (71,72,...,mm) be the associated

stationary probability vectors.
For all irreducuible m-state MCs undergoing a perturbation E = [5,7]

—T
Iz -7 =(K-DIEI,

m

. m T —T K 1
i.e. E/=1|E1 -7, = (K- )max1sism2k=1|ski|.

(Hunter, 20006)



Perturbation results

Special cases:
.

Ix" -7z |, =(tr(Z)-1)IE]L
and |2 -7 |, =(tr((I-P))IEIL

These were new bounds and a comparison was given with

earlier results
—T

lx" -7 |, <IZI|IE|, (Schweitzer, 1968)
—T
and ||z" - |, <ll(I-P)*IIIE|, (Meyer, 1980)



Elementary perturbations

Let M and M be the mean first passage matrices and

K and K be the Kemeny constants associated with P and P

Type 1 perturbation: Let P =P +E where E = eh'.
Then m_lr =m_foralli=r,

m=m. < gx <gm foralij=r.
Ul I J J
and K=K< E (. —m.)m_ =0.
i=r I I ir

Type 2 perturbation: Let P —P+E where E=eh’.

Then K = K
(Catral, Kirkland, Neumann, Sze, 2010)



Extended perturbations

Extensions:
1. Let P be a symmetric stochastic, irreducible matrix

P-P_Ewhere Eisa positive semi definite matrix with

E stochastic.

m m o,
Then M=) m, and K < K.

2. Let P be a stochastic, irreducible matrix and suppose O < a <1.
P=aP+(1-a)ev’ where v’ is a positive probability vector,
Then K < K.

(Catral, Kirkland, Neumann, Sze, 2010)



Directed graphs

A directed graph, or digraph, G =(V, £ )is a collection of vertices
(or nodes) i €V = {1,...,m} and directed edges or arcs (i — ) EE.
One can assign weights to each directed edge, making it a
weighted digraph.

An unweighted digraph has common edge weight 1.

G can be represented by its m x m adjacency matrix A = [al.j] where

a, =0 is the weighton arc (i = j)and a, =0 if (/ = j) €Z.

A digraph G is strongly connected or a strong digraph if there is a
pathi=i —i —..— I = jforany pair of nodes where each link
I, — I €Z. We focus on strong digraphs.



Random walks over a graph

A random walk over a graph can be represented as a MC with
transition matrix P = D~'A where D = Diag(Ae) = Diag(d).

We assume that every node has at least one out-going edge,
which can include self loops. Note that D, = d.,the degree of node 1.

If the graph is stongly connected the associated MC is irreducible
with p; = 1/ dj for those states j such that i — j, O otherwise.

If the graph were undirected the associated MC would be reversible,
and the stationary probability vector z”=d/d"e.



Mixing on directed graphs

For any stochastic matrix P of order m, the directed graph
associated with P, D(P) is the directed graph on vertices
labelled 1, 2, ..., m such thatforeachi,j=12,....m i — |
is an arc on D(P) if and only if p; > 0.

For a strongly connected graph D on m vertices define
ED={P | P is stochastic and mxm and foreachi,j =1, 2, ..., m,
I — jisanarcon D(P)onlyif i — jisanarcin D}

Define K(P) with the convention that m_ = 0.

Let w(D) = inf{K(P)| P EEDand P has 1 as a simple eigenvalue}

Let k = the length if the longest cycle in D, (i.e. period m=d = m)

2m -k -1
5 .

then u(D) = (Kirkland, 2010)



Electric networks and graphs

There is a connection between electric networks and random
walks and graphs. (Doyle & Snell,1984).
On a connected graph G with vertex set V ={1,2, ...,m} assign to
the edge (/, /) a resistance r,. The conductance of an edge

(,j)is C; = 1/r,. Define a random walk on G to be a MC with
transition probabilities p; = C; /C, with C,= ¥ C,.

I
Since the graph is connected the MC is ergodic with a stationary
probability vector " = (7,,...,,,) where 7, = C, /Cwith C = EIC,..

The MC is in fact reversible.
On the electric network we define C,.j =T,P,;-

(If p. = 0 the resulting network will need a conductance from/ to /.)



Electric networks and graphs

For a network of resistors assigned to the edges of a connected
graph we choose two points a and b and put a 1-volt battery
across these points establishing a voltage v_ =1, v, = 0.

We are interested in finding the voltages v, and the currents I,.j
In the circuit and to give a probabilistic interpretation.

By Ohm's Law /, = (v, -v,)/r. =(v,-v,)C,. Note |, = -1 .

By Kirchhoff's current law Ejlij =0 fori=a, b.

i.e if Ej(vi -v,)C,=0=v, = Ejvjpij fori=a, b.

Let h. be the probability of starting at /, that state a is reached

before b. Then h. also satisfies above equations withv_=h_=1
and v, = h =0.l.e. interpret the voltage as a "hitting probability"”.



Electric networks and graphs

Let E_T, be the expected value, starting from the vertex a,
of the hitting time T of the vertex b.
Let =, be the stationary probability of the MC at vertex i.

When we impose a voltage v between points a and b a voltage
v_ =V is established ataand v, =0 and a current /| = /

x ax

will flow into the circuit from outside the source.
We define the effective resistance between a and b as
R, = v_ /i ,as calculated using Ohm's Law.

Then

ET, =% S CiR,+R,-R,} (Palacios &Tetali,1996)



Kirchhoff index

Let G be a simple connected graph with vertex set
V={1,2, ...mj.
Let R, be the effective resistance between j and .

The Kirchhoff index is defined as
Kf(G)= ) R

i<j "

(Klein & Randic,1993)
Since R, =R, and R, = 0, Kf(G) = %EU R,.
(Used in Chemistry to discriminate between different molecules
with similar shapes and cycle structures.)

A lot of interest in recent years - graph theory, Laplacian and
normalised Laplacians, electric networks, hitting times.



Gustav R Kirchhoff (1824 — 1887)




Kirchhoff index

Kf(G)=Y R,

i<j
We use the relations between electric networks and random
walks on graphs.
For a graph of m vertices computing Kf(G) entails finding

O(m’) values of the R, which is equivalent to finding O(m*)
values of the E,T; for the random walk on the graph.

Kf(G) can be characterised as (Palacois & Renom, 2010)

2|E|z'1 "

- based on the fact that the "commute times" can be expressed as
E,.Tj + EjT,. =2|E| Rij (Aldous & Fill, 2002)



Kirchhoff index

Kf(G) can also be characterised as Kf(G) = mz'f”;ll
I= Mi

(Zhu, Klein, Lukovits, 1996) (Gutman, Mohar, 1996)

where the u's (i = 1, 2, ..,m) with u_ = 0, are the eigenvalues

of the (ordinary or combinatorial) Laplacian matrix L of G,

je.L=D-A=D(-P).

Using the above characterisation, upper and lower bounds for
Kf have been found (Zhou and Trinajstic, 2009). They also found
bounds in terms of the eigenvalues of the normalised Laplacian

L — D_1/2LD_1/2.



Kirchhoff index and Z

In the case of d-regular graphs,(where all vertices have exactly d
neighbours) using the characterisation of the Kirchhoff index as
LY ET

d & '
it was shown (Palacois, 2010) that

Kf(G)

KF(G) =% [tr(Z) - 1]

where Z =(/-P +ex')", with P the transition matrix of the
random walk and #” its stationary probability vector.

Thus we have a connection between the Kirchhof index
and Kemeny's constant K = tr(Z) - 1.



Variances of mixing times

The expected time to mixing starting in any state,r, ,is

m

constant independent of the starting state; 7, = K = AT

What about the variance of the mixing times?

Do these depend on the starting state?

If so, can we choose a desirable starting state?

We explore some results on the second moments of the
first passage time variables.

Let m.” be the 2-nd moment of the first passage time

from state i to state j. ie. m? =E[T | X, =] forall(i, j)) ES x S;
and let M*®) = [m??)].
if



2" moments first passage times

M'?) satisfies the matrix equation
(I-PM® = E +2P(M —M,)— PM?.
M® = 2D(TIM) , - D.
If G is any g-inverse of [ - P
M® = D + 2D{(I - T)G(/ - 1)}, D.
If Ge = ge, M? =D +2D{(I-1I)G} D.
In particular,
M® =D +2DT,D = 2DZ,D - D



2" moments first passage times

If G is any g-inverse of /| - P
M) = 2[GM — E(GM) ]+[I-G+ EGd][Mé,Z) +D]-M,
= 2[GM - E(GM) ]+ 2[ - G + EG ]D(IIM) , — M.
(Hunter, 20006)
If Ge = ge, then
M'® = 2[GM — E(GM) S+ MD'1M§,2) (Hunter, 2000)

In particular, M® = 2[ZM — E(ZM) ]+ M(2Z D — 1)
= 2[A*M — E(A*M),]+ M(2AD +1).



Elemental expressions

If G = [gij] then

m;? = 22:11(9% =Gy )My; =My +(8; = g; + g, )Nm;” +m,).

If Ge = ge
(2)

m.m:

(2) _ m _ /Y
m -22k=1(gik g,)m, + e

Jii

m

Also m(2)+m =2m, N~ xm,.

(Hunter, 2006)



Variances of the mixing times

Let T be the mixing time variable and let
= E[T*| X, —:]—E mx and " = (0. .n"0).

We have seen that n'"" = (,, Ty Ty m) = N€ = Ke,

showing that the expected mixing time, starting at /, is constant.
The variance of the mixing time, starting at /, is given by

V. = n'? -n® Ifv' = (V,v,,...,v ) then v = n'* - n°e.
From (Hunter, 20006), if G is any g-inverse of / - P,such that Ge = e
2 = [2tr(G?) - 3tr(G) - (1- 29)(1- g)le + 2La,
= [2tr(G?) - (tr(G))* = (5 - 2g9)tr(G) - (1- g)(2 - 3g)]e + 2La,
where L=/-G+EG, and a = e - (I1G)_ De + G De.

vV, =V foralli <= La = le. A sufficient condition is a = ae.



Variances mixing times, 2-states

1-a a
b 1-b

For the 2-state case, P = andd=1-a-0>b.

v, | 1 [ (2a*+2b-3ab)a+b)-ab |
v, | ab(1-d)*| (2b®+2a-3ab)(a+b)-ab

Lines a=b & a+ b=1partition the parameter space
(a,b) to give regions where v. =v,,v. <v, and v, > v,.

Vi<V, pr21 <Py <Py OF Py < Pyy < Py



Variances mixing times, 2-states

Graphof v. - v, :
500
V-V, 0

J
DXONOOMNOAD
QANOWNOANASG
'0'," et

M 0-500
@-500-0
-500

1.000
0.025

1.000

Hunter, 2008
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