On the eigenvalues of principal submatrices of J-normal matrices: the J-diagonalizable case and the general 3×3 case

Natália Bebiano1, Susana Furtado2
and João da Providência1

1University of Coimbra, Portugal
2University of Porto, Poland

Abstract

Let M_n be the algebra of $n \times n$ complex matrices and let J be a diagonal involution. Consider the indefinite inner product $\langle \cdot, \cdot \rangle$ defined by $\langle x, y \rangle = y^* J x$, $x, y \in \mathbb{C}^n$. A matrix $A \in M_n$ is said to be J-normal if $A^# A = AA^#$, in which $A^#$ is the J-adjoint of A defined by $\langle Ax, y \rangle = \langle x, A^# y \rangle$ for any $x, y \in \mathbb{C}^n$ (that is, $A^# = J A^* J$). We say that $U \in M_n$ is a J-unitary matrix if $U^{-1} = U^#$. A matrix A is J-unitarily diagonalizable if there exists a J-unitary matrix U such that $U^# AU$ is diagonal.

In this talk we consider the following problem: give necessary and sufficient conditions for the existence of a J-normal matrix A with prescribed eigenvalues for A and some of its $(n - 1) \times (n - 1)$ principal submatrices. The particular case in which A is J-unitarily diagonalizable is considered. The general 3×3 case is also studied.