On the eigenvalues of principal submatrices of *J*-normal matrices: the J-diagonalizable case and the general 3×3 case

Natália Bebiano¹, <u>Susana Furtado²</u> and João da Providência¹

¹University of Coimbra, Portugal ²University of Porto, Poland

Abstract

Let M_n be the algebra of $n \times n$ complex matrices and let J be a diagonal involution. Consider the indefinite inner product $[\cdot, \cdot]$ defined by $[x, y] = y^*Jx, x, y \in \mathbb{C}^n$. A matrix $A \in M_n$ is said to be J-normal if $A^{\#}A = AA^{\#}$, in which $A^{\#}$ is the J-adjoint of A defined by $[Ax, y] = [x, A^{\#}y]$ for any $x, y \in \mathbb{C}^n$ (that is, $A^{\#} = JA^*J$). We say that $U \in M_n$ is a J-unitary matrix if $U^{-1} = U^{\#}$. A matrix A is J-unitarily diagonalizable if there exists a J-unitary matrix U such that $U^{\#}AU$ is diagonal.

In this talk we consider the following problem: give necessary and sufficient conditions for the existence of a *J*-normal matrix *A* with prescribed eigenvalues for *A* and some of its $(n - 1) \times (n - 1)$ principal submatrices. The particular case in which *A* is *J*-unitarily diagonalizable is considered. The general 3×3 case is also studied.

1