Positive semidefinite polynomials and sums of squares

Carla Fidalgo¹ and Alexander Kovačec²

¹Coimbra Institute of Engineering, Portugal ²University of Coimbra, Portugal

Abstract

By a diagonal minus tail form (of even degree) we understand a real homogeneous polynomial $F(x_1, ..., x_n) = F(\underline{x}) = D(\underline{x}) - T(\underline{x})$, where the diagonal part $D(\underline{x})$ is a sum of terms of the form $b_i x_i^{2d}$ with all $b_i \geq 0$ and the tail $T(\underline{x})$ a sum of terms $a_{i_1i_2...i_n} x_1^{i_1}...x_n^{i_n}$ with $a_{i_1i_2...i_n} > 0$ and at least two $i_{\nu} \geq 1$. We show that an arbitrary change of the signs of the tail terms of a positive semidefinite diagonal minus tail form will result in a sum of squares (sos) of polynomials. The work uses Reznick's theory of agiforms [3] and gives easily tested sufficient conditions for a form to be sos; one of these is piecewise linear in the coefficients of a polynomial and reminiscent of Lassere's recent conditions [2] but proved in completely a different manner.

Keywords

Polynomials (in several variables), Positive semidefiniteness, Sums of squares.

References

- Fidalgo, C. and A. Kovačec (2010). Positive semidefinite diagonal minus tail forms are sums of squares. *Math. Zeit.* DOI 10.1007/s00209-010-0753y.
- [2] Lasserre, J.B. (2007). Sufficient conditions for a polynomial to be a sum of squares. Arch. Math. 89, 390–398.
- [3] Reznick, B. (1989). Forms derived from the arithmetic geometric inequality. Math. Ann. 283, 431–464.

1