Existence and representation of the group inverse of additive perturbations

Nieves Castro-González

Technical University of Madrid, Spain

Abstract

Let R be a ring with unity 1. An element $a \in R$ is said to be von Neumann regular if there exists an element a^- of R such that $aa^-a = a$. In this case, a^- is called a {1}-inverse of a. An element a^+ of R is a $\{1,2\}$ -inverse of a if $aa^+a = a$ and $a^+aa^+ = a^+$ hold. An element $a^{\sharp} \in R$ is said to be the group inverse of a if a^{\sharp} is a $\{1, 2\}$ -inverse of a such that $aa^{\sharp} = a^{\sharp}a$. If a is a unit of R, then $a^{\sharp} = a^{-1}$. A von Neumann regular element $a \in R$ is group invertible if and only if $a + 1 - aa^{-1}$ is a unit of R, independently of the choice of a^- of a. [2, Theorem 3.1]. The existence of the group inverse of a was characterized in [4] by means of other unit, $1 - aa^- - a^-a$. If the group inverse of a exists, the additive perturbed element a+b is not necessarily group invertible. Our purpose is to give a characterization for the group invertibility of a+b in terms of a unit of R. Further, a representation for $(a+b)^{\sharp}$ will be derived. The group inverse plays an important role in the theory of Markov chains [1]. Some applications in the setting of complex square matrices will be indicated.

The research is partially supported by Project MTM2010-18057, "Ministerio de Ciencia e Innovación" of Spain.

Keywords

Von Neumann regular, Group inverse, $\{1, 2\}$ -inverse.

References

- Benzi, M. (2004). A direct projection method for Markov chains. *Linear Algebra Appl. 386*, 27–49.
- [2] Castro-González, N., C. Mendes-Araújo, and P. Patricio (2009). Generalized inverses of a sum in rings. Bull. Austral. Math Soc. 82, 156–164.
- [3] Li, X. and Y. Wei (2001). An improvement of the perturbation of the group inverse and oblique projection. *Linear Algebra Appl.* 388, 53–66.
- [4] Schmoeger, C. (2003). On Fredholm properties of operator products. Math. Proc. R. Ir. Acad. 103A, 2, 203–208.