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Abstract

Let R be a ring with unity 1. An element a € R is said to be von
Neumann regular if there exists an element a~ of R such that aa™a = a.
In this case, a” is called a {1}-inverse of a. An element a® of R is a
{1, 2}-inverse of a if aa™a = a and a*aa’t = a* hold. An element
a* € R is said to be the group inverse of a if a¥ is a {1, 2}-inverse of a
such that aa® = a¥a. If a is a unit of R, then a* = ¢~ *. A von Neumann
regular element @ € R is group invertible if and only if a + 1 — aa™
is a unit of R, independently of the choice of a~ of a. [2, Theorem
3.1]. The existence of the group inverse of a was characterized in [4]
by means of other unit, 1 —aa™ —a™ a. If the group inverse of a exists,
the additive perturbed element a+ b is not necessarily group invertible.
Our purpose is to give a characterization for the group invertibility of
a-+b in terms of a unit of R. Further, a representation for (a + b)* will
be derived. The group inverse plays an important role in the theory of
Markov chains [1]. Some applications in the setting of complex square
matrices will be indicated.
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