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Abstract

Models with orthogonal block structure (OBS), introduced by [5]
still play an important part in experimental designs, see e.g. [1], [2].

We are interested in two important classes of these models, namely
Error Orthogonal models (EO) and models with commutative orthog-
onal block structure (COBS).

EO, introduced by [7], are models whose least square estimators
are uniformly best linear unbiased estimators and having the family of
variance-covariance matrices given by

V =

{
m∑

j=1

γjQj

}
.

On the other hand, COBS, introduced by [3] are models whose
orthogonal projection matrix on the space spanned by the mean vec-
tor commutes with Q1, . . . ,Qm, which are known pairwise orthogonal
orthogonal projection matrices of a principal basis of a commutative
Jordan algebra of symmetric matrices.

We intend to present the equivalence of these models making use
of the model structure in order to estimate variance components.
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