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Abstract

Self-dual codes are an important class of linear codes for both theo-
retical and practical purposes. The classical reference in the subject is
[11]. From time to time, some classifications of binary and ternary self-
dual codes are described (see [1], [6], [5] and the references there cited,
for instance). Several techniques are known to construct doubly-even
([13]), singly-even ([7]) and ternary ([4]) self-dual codes from Hadamard
matrices. This way, Hadamard matrices are a potential source for ex-
tremal binary and ternary self-dual codes. Unfortunately, manipulat-
ing Hadamard equivalence classes for orders greater than 32 (even for
order 32, see [9]) seems to be unfeasible for the moment. The use
of cocyclic Hadamard matrices might be an interesting alternative, as
indicated in [8]. In fact, very recently, cocyclic Hadamard matrices
of order less than 40 have been completely classified up to Hadamard
equivalence in [10]. And cocyclic Hadamard matrices have been al-
ready used to construct (extremal) self-dual codes [2], [3], [12]. In this
work we describe (extremal) binary and ternary self-dual codes ob-
tained from cocyclic Hadamard matrices over dihedral groups D4t and
abelian groups ZZ2

2 × ZZt for t ≤ 11.
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